径向滑动轴承中轴承孔与轴颈的法向接触刚度建模

田红亮,董元发,余媛,陈甜敏

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 232-242.

PDF(2778 KB)
PDF(2778 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 232-242.
论文

径向滑动轴承中轴承孔与轴颈的法向接触刚度建模

  • 田红亮,董元发,余媛,陈甜敏
作者信息 +

Modeling for normal contact stiffness between bearing hole and shaft journal in a radial sliding bearing

  • TIAN Hongliang,  DONG Yuanfa,  YU Yuan,  CHEN Tianmin
Author information +
文章历史 +

摘要

将分形理论与结合部虚拟材料相结合,构建径向滑动轴承中轴承孔与轴颈的法向接触刚度模型。修正Weierstrass函数在任一点处处不可求导的条件。严格论证分形维数的限定范围是1≤D<2。数值模拟表明:轴承接触的侧面接触系数等于或小于1。内接触的侧面接触系数大于外接触的侧面接触系数。随着轴颈半径、法向接触载荷的增加,结合部虚拟材料厚度的减小,轴承接触的侧面接触系数增加。内接触的真实接触面积大于外接触的真实接触面积。随着轴颈半径的增加,分形粗糙度、轴承孔平面布氏硬度、结合部虚拟材料厚度的减少,真实接触面积提高。对于固定的法向接触载荷,当分形维数由1.4增大至1.5时,真实接触面积随之增加;当分形维数由1.5增大至1.9时,真实接触面积随之减少。赫兹应力随着轴颈半径的增加而下降。内接触的赫兹应力小于外接触的赫兹应力。轴承内接触的法向接触刚度大于外接触的法向接触刚度。另外,随着法向接触载荷、分形维数、轴颈半径的增加,分形粗糙度、轴颈弹性模量、轴承长度、结合部虚拟材料厚度的减小,法向接触刚度增加。

Abstract

The normal contact stiffness model between bearing hole and shaft journal in a radial sliding bearing was built through combining the fractal theory and the joint interface virtual material. Through revising the condition of Weierstrass function’s nondifferentiability at any point, it was proved rigorously that the limited range of fractal dimension is 1≤D<2. Numerical simulation showed that the side face contact coefficient in bearing contact is equal to or less than 1; the side face contact coefficient of inner contact is larger than that of outer contact; when the shaft journal radius and normal contact load increase and joint interface virtual material thickness decreases, the side face contact coefficient in bearing contact increases; the real contact area of inner contact is bigger than that of outer contact; when the shaft journal radius increases and fractal roughness, plane Brinell hardness of bearing hole and joint interface virtual material thickness decrease, the actual contact area increases; when the fractal dimension increases from 1.4 to 1.5, the real contact area increases; when the fractal dimension increases from 1.5 to 1.9, the real contact area decreases; Hertz stress decreases with increase in shaft journal radius; Hertz stress of inner contact is less than that of outer contact; the normal contact stiffness of bearing inner contact is larger than that of outer contact; when the normal contact load, fractal dimension and shaft journal radius increase and fractal roughness, elastic modulus of shaft journal, bearing length and joint interface virtual material thickness decrease, the normal contact stiffness increases.

 

关键词

径向滑动轴承 / 轴承孔 / 轴颈 / 法向接触刚度 / 平面接触 / 曲面接触

Key words

radial sliding bearing / bearing hole / shaft journal / normal contact stiffness / planar contact / curved surface contact

引用本文

导出引用
田红亮,董元发,余媛,陈甜敏. 径向滑动轴承中轴承孔与轴颈的法向接触刚度建模[J]. 振动与冲击, 2017, 36(23): 232-242
TIAN Hongliang, DONG Yuanfa, YU Yuan, CHEN Tianmin. Modeling for normal contact stiffness between bearing hole and shaft journal in a radial sliding bearing[J]. Journal of Vibration and Shock, 2017, 36(23): 232-242

参考文献

[1] 李小彭,王伟,赵米鹊,等. 考虑摩擦因素影响的结合面切向接触阻尼分形预估模型及其仿真[J]. 机械工程学报,2012,48(23):46 - 50.
LI Xiao-peng, WANG Wei, ZHAO Mi-que, et al. Fractal prediction model for tangential contact damping of joint surface considering friction factors and its simulation[J]. Journal of Mechanical Engineering, 2012, 48(23):46 - 50.
[2] 李小彭,郭浩,刘井年,等. 考虑摩擦的结合面法向刚度分形模型及仿真[J]. 振动、测试与诊断,2013,33(2):210 – 213,336.
LI Xiao-peng, GUO Hao, LIU Jing-nian, et al. Fractal model and simulation of normal contact stiffness considering the friction between joint surfaces[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(2):210 - 213,336.
[3] 张学良,王南山,温淑花,等. 机械结合面切向接触阻尼能量耗散弹塑性分形模型[J]. 机械工程学报,2013,49(12):43 - 49.
ZHANG Xue-liang, WANG Nan-shan, WEN Shu-hua, et al. Elastoplastic fractal model for tangential contact damping energy dissipation of machine joint interfaces[J]. Journal of Mechanical Engineering, 2013, 49(12):43 - 49.
[4] Tian Hong-liang, Li Bin, Liu Hong-qi, et al. A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools[J]. Elsevier International Journal of Machine Tools & Manufacture, 2011, 51(3):239 - 249.
[5] 田红亮,刘芙蓉,方子帆,等. 引入各向同性虚拟材料的固定结合部模型[J]. 振动工程学报,2013,26(4):561 - 573.
TIAN Hong-liang, LIU Fu-rong, FANG Zi-fan, et al. Immovable joint surface’s model using isotropic virtual material[J]. Journal of Vibration Engineering, 2013, 26(4):561 - 573.
[6] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London:Series A Mathematical and Physical Sciences, 1966, 295(1442):300 - 319.
[7] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[J]. Transactions of the ASME Journal of Tribology, 1991, 113(1):1 - 11.
[8] 黄康,赵韩,陈奇. 两圆柱体表面接触承载能力的分形模型研究[J]. 摩擦学学报,2008,28(6):529 - 533.
HUANG Kang, ZHAO Han, CHEN Qi. Research of fractal contact model on contact carrying capacity of two cylinders’ surface[J]. Tribology, 2008, 28(6):529 - 533.
[9] Hertz H. Über die berührung fester elastischer körper[J]. J Reine und Angewandte Mathematik, 1882, 92:156 - 171.
[10] 冯剑军,谭援强. 基于Hertz理论圆柱和平面之间的滑动接触分析[J]. 摩擦学学报,2009,29(4):346 - 350.
FENG Jian-jun, TAN Yuan-qiang. Analysis of the slipping contact between a cylinder and a plane on the base of Hertz theory[J]. Tribology, 2009, 29(4):346 - 350.
[11] 赵韩,陈奇,黄康. 两圆柱体结合面的法向接触刚度分形模型[J]. 机械工程学报,2011,47(7):53 - 58.
ZHAO Han, CHEN Qi, HUANG Kang. Fractal model of normal contact stiffness between two cylinders’ joint interfaces[J]. Journal of Mechanical Engineering, 2011, 47(7):53 - 58.
[12] Liu Shu-guo, Ma Yan-hong, Zhang Da-yi, et al. Studies on dynamic characteristics of the joint in the aero-engine rotor system[J]. Elsevier Mechanical Systems and Signal Processing, 2012, 29:120 - 136.
[13] 陈奇,黄康,张彦,等. 两任意轮廓弹性体接触应力计算的分形模型研究[J]. 机械强度,2012,34(4):557 - 561.
CHEN Qi, HUANG Kang, ZHANG Yan, et al. Research on fractal model of calculating the contact stress about two elastic body with arbitrary profile[J]. Journal of Mechanical Strength, 2012, 34(4):557 - 561.
[14] Johnson K L. Contact mechanics[M]. Ninth printing. United Kingdom:Cambridge University Press, 2004:20.
[15] Popov V L. Contact mechanics and friction physical principles and applications[M]. New York:Springer-Verlag Berlin Heidelberg, 2010:58.
[16] 李水根. 分形[M]. 北京:高等教育出版社,2006:1 - 2.
[17] Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society of London:Series A Mathematical and Physical Sciences, 1971, 324(1558):301 - 313.
[18] 赵广,苏钧聪,韩清凯,等. 圆柱面接触刚度建模与仿真[J]. 华中科技大学学报:自然科学版,2015,43(12):21 - 26.
ZHAO Guang, SU Jun-cong, HAN Qing-kai, et al. Modeling and simulation of cylindrical surface contact stiffness[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2015, 43(12):21 - 26.
[19] 赵永武,吕彦明,蒋建忠. 新的粗糙表面弹塑性接触模型[J]. 机械工程学报,2007,43(3):95 - 101.
ZHAO Yong-wu, LÜ Yan-ming, JIANG Jian-zhong. New elastic-plastic model for the contact of rough surfaces[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3):95 - 101.
[20] 黄玉美,付卫平,董立新,等. 结合面法向动态特性参数研究[J]. 机械工程学报,1993,29(3):74 - 78.
HUANG Yu-mei, FU Wei-ping, DONG Li-xin, et al. Research on the dynamic normal characteristic para meters of joint surface[J]. Chinese Journal of Mechanical Engineering, 1993, 29(3):74 - 78.

PDF(2778 KB)

504

Accesses

0

Citation

Detail

段落导航
相关文章

/