小样本下基于竞争失效的轴承可靠性评估

秦荦晟,陈晓阳,沈雪瑾

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 248-254.

PDF(1201 KB)
PDF(1201 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 248-254.
论文

小样本下基于竞争失效的轴承可靠性评估

  • 秦荦晟,陈晓阳,沈雪瑾
作者信息 +

Reliability assessment of bearings based on competing failure under small sample data

  • QIN Luo-sheng, CHEN Xiao-yang, SHEN Xue-jin
Author information +
文章历史 +

摘要

轴承是机械产品中重要的组成部分,其性能和寿命与机械设备的运行寿命密切相关。为获得准确的轴承可靠性评估结果,应当综合考虑不同失效模式对轴承可靠性的影响。针对轴承试验中完全失效的数据,利用Bootstrap法构造轴承寿命分布参数的先验分布,依据Bayes法估计出相应的后验分布,并对后验期望修偏即可获得轴承寿命分布参数。通过进一步分析轴承的振动性能退化数据,获得轴承局部失效的寿命分布。利用Copula函数对轴承的完全失效的寿命分布模型和局部失效寿命模型进行综合分析,借助试验数据点的经验Kendall相关秩估计Copula函数的相关参数,求得轴承竞争失效下的可靠性分析结果,获得的分析结果有助于寻找轴承设计过程中存在的缺陷,提高轴承的可靠度。

Abstract

Bearings are important parts in machinery products. Their performance and life are closely related to operating lives of mechanical systems. It is necessary to consider the effects of different failure modes on rolling bearings’ reliability. Here, aiming at the full failure data in bearings’ reliability tests, the prior distributions of bearing life distribution parameters were established with Bootstrap method. Then, the corresponding posterior distributions were estimated using Bayes method. The bearing life distribution parameters were obtained through the posterior expectation reduction. The life distribution model of bearing local failure was gained through further analyzing bearings’ vibration performance degradation data. Copula function was used to analyze comprehensively the life distribution model of bearing full failure and that of bearing local failure. The relative parameters of Copula function were estimated with the experience Kendall relative ranks of test data. Finally, the reliability assessment results of bearings under competing failure were achieved. The results were helpful to find defects in bearing design and improve the bearing reliability.

关键词

轴承 / Bootstrap方法 / Bayes法 / 性能退化 / Copula函数 / 可靠性

Key words

bearings / Bootstrap method / Bayes method / performance degradation / Copula function / reliability

引用本文

导出引用
秦荦晟,陈晓阳,沈雪瑾. 小样本下基于竞争失效的轴承可靠性评估[J]. 振动与冲击, 2017, 36(23): 248-254
QIN Luo-sheng, CHEN Xiao-yang, SHEN Xue-jin. Reliability assessment of bearings based on competing failure under small sample data[J]. Journal of Vibration and Shock, 2017, 36(23): 248-254

参考文献

[1]. S. J. Dong, S. R. Yin, B. P. Tang, et al. Bearing degradation process prediction based on the support vector machine and Markov model [J]. Shock and vibration, 2014, 2014(1): 1-15.
[2]. E. Sutrisno, H. Oh, A. S. S. Vasan, M. Pecht. Estimation of remaining useful life of ball bearings using data driven methodologies [C]. IEEE Conference on Prognostics & Health Management, 2012: 1-7.
[3]. B. Zhang, L. J. Zhang, J. W. Xu. Degradation feature selection for remaining useful life prediction of rolling element bearings [J]. Quality and Reliability Engineering International, 2016, 32(3): 547-554.
[4]. 王华伟,高军,吴海桥. 基于竞争失效的航空发动机剩余寿命预测[J].机械工程学报,2014,50(6): 197-205.
 Wang Hua-wei, Gao Jun, Wu Hai-qiao. Residual remaining life prediction based on competing failures for aircraft engines [J]. Journal of Mechanical Engineering, 2014, 50(6): 197-205.
[5]. 唐家银,何平,梁红琴,等. 多故障模式高长寿命产品相关性失效的综合可靠性评估[J].机械工程学报,2013,49(12): 176-182.
Tang Jia-yin, He Ping, Liang Hong-qin, et al. Comprehensive reliability assessment of long-life products with correlated multiple failure modes [J]. Journal of Mechanical Engineering, 2013, 49(12): 176-182.
[6]. 常春波,曾建潮. δ冲击条件下相关性竞争失效过程的系统可靠性建模 [J]. 振动与冲击,2015,34(8): 203-208,213.
    Chang Chun-bo, Zeng Jian-chao. Reliability modeling for dependent competing failure processes under δ-shock [J]. Journal of Vibration and Shock, 2015, 34(8): 203-208, 213.
[7]. D. Bocchetti, M. Giorgio, M. Guida, et al. A competing risk model for the reliability of cylinder liners in marine Diesel engines [J]. Reliability Engineering and System Safety, 2009, 94(8): 1299-1307.
[8]. 蒋喜,刘宏昭,刘丽兰,等. 基于伪寿命分布的电主轴极小子样可靠性研究 [J]. 振动与冲击,2013,32(19): 80-85.
    Jiang Xi, Liu Hong-zhao, Liu Li-lan, et al. Extremely small-scale sample's reliability of an electric spindle based on distribution of false lifetime [J]. Journal of Vibration and Shock, 2013, 32(19): 80-85.
[9]. J. Xiong, R. A. Shenoi, Z. Gao. Small sample theory for reliability design [J]. The Journal of Strain Analysis for Engineering Design, 2002, 37 (1): 87-92.
[10]. V. Picheny, N.H. Kim, R.T. Haftka. Application of the bootstrap method in conservative estimation of reliability with limited samples [J]. Structural & Multidisciplinary Optimization ,  
2010, 41 (2): 205-217.
[11]. D. Kurz, H. Lewitschnig, J. Pilz. Advanced Bayesian estimation of Weibull early life failure distributions [J]. Quality and Reliability Engineering International, 2014, 30(3): 363 -373.
[12]. P. Erto. New practical bayes estimators for the 2-parameter Weibull distribution [J]. IEEE Transactions on Reliability, 1982, 31(2): 194-197.
[13]. 金光. 一种综合性能与寿命试验数据的Bayes-Bootstrap方法[J]. 宇航学报,2007,28(3): 731-734, 771.
Jin Guang. A Bayes-Bootstrap method synthesizing performance and life data [J]. Journal of Astronautics, 2007, 28(3): 731-734, 771.
[14]. M. Rausand. 系统可靠性理论:模型、统计方法及应用(第2版)[M].郭强,王秋芳,刘树林译. 北京:国防工业出版社,2011.
[15]. 肖支才,高华明,丁通,等. 自助法在小样本数据均值估计中的应用[J].海军航空工程学院学报,2009,24(5): 563-572.
Xiao Zhi-cai, Gao Hua-ming, Ding Tong, et al. Research on data anlysis of small sample based on bootstrap method [J]. Journal of Naval Aeronautical and Astronautical University, 2009, 24(5): 563-572.
[16]. B. Efron, R. Tibshirani. An introduction to the Bootstrap [M]. New York: Chapman hall, 1993.
[17]. Lu C. J., Meeker W. Q. Using Degradation Measures to Estimation Time -to-Failure Distribution [J]. Technometrics, 1993, 35 (2): 161-174.
[18]. 赵建印,刘芳,孙权,等. 基于性能退化数据的金属化膜电容器可靠性评估[J]. 电子学报,2005,33(2): 378-381.
Zhao Jian-yin, Liu Fang, Sun Quan, et al. Reliability estimate of metallized-film pulse capacitor from degradation data [J]. ACTA ELECTRONICA SINCA, 2005, 33(2): 378-381.
[19]. R. B. Nelsen. An introduction to Copulas. (Second Edition) [M]. Springer, 2005.
[20]. Lee. L. Multivariate distributions having Weibull properties [J].Journal of multivariate analysis, 1979, 9(2):267-277.
[21]. 唐家银,何平,陈崇双. 相关性失效机械系统的可靠性分析方法[M].国防工业出版社,2014. 
[22]. 陈家鼎. 随机截尾情形下Weibull分布参数的最大似然估计的相合性[J]. 应用概率统计,1989,5(3): 226-223.
Chen Jia-ding. On the consistency of maximum likelihood estimators based on randomly censored data in the Weibull distribution case [J]. Chinese Journal of Applied Probability and Statistics, 1989, 5(3): 226-223.
[23]. 夏新涛,章宝明,徐永智. 滚动轴承性能与可靠性乏信息变异过程评估[M].科学出版社,2013.

PDF(1201 KB)

Accesses

Citation

Detail

段落导航
相关文章

/