基于粘弹性薄板假设和势流理论,建立了气垫船在水面、冰面、碎冰面上航行时引起冰层-水层振动问题的统一的理论数学模型,提出了采用Rankine源与有限差分相结合的数值计算方法,通过C语言与Matlab联合编程,建立了冰层-水层的位移响应、应力分布以及破裂效果的预报方法。针对黄河水域冰层特点,对气垫船以亚临界、临界以及超临界速度航行时冰层的应力分布以及破裂情况进行了数值模拟。结果表明:本文所建立的理论模型和计算方法可以反映冰层的位移变形及其内部应力的分布特征,可以捕捉到气垫船破冰的临界速度,计算得到的冰层振动特性与已有文献的研究结果一致。
Abstract
Based on the viscoelastic thin plate assumption and the potential flow theory, a unified theoretical dynamic model was established to study ice layer-water layer vibration problems due to ACV sailing on water surface, ice surface or broken ice surface. The numerical method combing Rankine source method and the finite difference method (FDM) was proposed, the prediction method for ice layer-water layer displacement responses, stress distribution and ice-breaking effect was established using the simulation program written with C language and Matlab. Aiming at characteristics of ice layer in Yellow River water field, its stress distribution and ice-breaking effect were simulated numerically when ACVs sailing at subcritical speed, critical one and supercritical one. These simulated results showed that the established theoretical model and simulation method can not only reflect ice layer displacement deformation and its internal stress distribution characteristics, but also capture the critical speed of ACVs’ ice-breaking; the ice layer’s vibration features calculated agree well with those in the existing literature.
关键词
气垫船 /
破冰 /
Rankine源法 /
有限差分法
{{custom_keyword}} /
Key words
air cushion vehicle (ACV) /
ice-breaking /
Rankine source method /
FDM
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Squire V A, Hosking R J, Kerr A D, et al. Moving loads on ice plates[M]. The Netherlands: Kluwer Academic Publishers, 1996.
[2] Kozin V M, Milovanova A V. The wave resistance of amphibian aircushion vehicles in broken ice[J]. Journal of Applied Mechanics and Technical Physics, 1996,37(5):634-637.
[3] Kozin V M, Pogorelova A V. Effect of broken ice on the wave resistance of an amphibian air-cusion vehicle in nonstationary motion[J]. Journal of Applied Mechanics and Technical Physics, 1999,40(6):1036-1041.
[4] Kozin V M, Pogorelova A V. Variation in the wave resistance of an amphibian air-cusion vehicle moving over a broken-ice land[J]. Journal of Applied Mechanics and Technical Physics,2007,48(1):80-84.
[5] Kozin V M, Pogorelova A V. Wave resistance of amphibian aircushion vehicles during motion on ice fields[J]. Journal of Applied Mechanics and Technical Physics, 2003,44(2):193-197.
[6] Zhestkaya V D,Kozin V M. Stress-deformed state of a semi-infinite Ice sheet under the action of a moving load[J]. Journal of Applied Mechanics and Technical Physics, 1994,35(5):745-749.
[7] 鹿飞飞, 张志宏, 胡明勇等. 浅水岸壁条件下脉冲载荷引起的粘弹性浮冰层位移响应[J]. 振动与冲击, 2015, 34(14):142-146.
LU Fei-fei, ZHANG Zhi-hong, HU Ming-yong, et al. Displacement response of viscoelastic floating ice sheet subjected to impulse load under different bank conditions[J]. Journal of Vibration and Shock, 2015, 34(14):142-146.
[8] 张志宏, 鹿飞飞, 丁志勇等. 匀速移动载荷激励浮冰层大幅响应的临界速度[J]. 华中科技大学学报(自然科学版), 2016,44(2):107-111.
ZHANG Zhi-hong, LU Fei-fei, DING Zhi-yong et al. Critical speed of a sharp response for floating ice sheet subjected to moving load with uniform speed[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2016, 44(2):107-111.
[9] 卢再华, 张志宏, 胡明勇等. 全垫升式气垫船破冰过程的数值模拟[J]. 振动与冲击, 2012, 31(24):148-154.
LU Zai-hua, ZHANG Zhi-hong, HU Ming-yong, et al. Numerical simulation for ice-breaking process of an amphibian air cushion vehicle[J]. Journal of Vibration and Shock, 2012, 31(24):148-154.
[10] 刘巨斌, 张志宏, 张辽远, 等. 气垫船兴波破冰问题的数值计算[J]. 华中科技大学学报(自然科学版), 2012, 40(4):91-95.
LIU Ju-bin, ZHANG Zhi-hong, ZHANG Liao-yuan, et al. Numerical computation of broken ice by air-cushion vehicles in wave making[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2012,40(4):91-95.
[11] 刘巨斌, 张志宏, 张辽远, 等. 边界元—有限差分法在气垫船破冰数值模拟中的应用[J]. 海军工程大学学报, 2013, 25(3):50-55.
LIU Ju-bin, ZHANG Zhi-hong, ZHANG Liao-yuan, et al. Application of mixed BEM and FDM in numerical simulation of ice-breaking by air cushion vehicle[J]. Journal of Naval University of Engineering, 2013, 25(3):50-55.
[12] Pogorelova A V, Kozin V M. Motion of a load over a floating sheet in a variable-depth pool[J]. Journal of Applied Mechanics and Technical Physics, 2014,55(2):335-344.
[13] Takizawa T. Deflection of a floating sea ice sheet induced by a moving load[J]. Cold Regions Science and Technology, 1985,11:171-180.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}