柔性多体系统含摩擦碰撞stick-slip过程动力学仿真

钱震杰1,章定国2,金诚谦1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 32-37.

PDF(808 KB)
PDF(808 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 32-37.
论文

柔性多体系统含摩擦碰撞stick-slip过程动力学仿真

  • 钱震杰1 , 章定国2,金诚谦1
作者信息 +

Dynamic simulation for flexible multibody systems containing frictional impact and stick-slip processes

  • QIAN Zhenjie 1,  ZHANG Dingguo 2 , Jin Chengqian 1
Author information +
文章历史 +

摘要

基于高次刚柔耦合理论和Lagrange 乘子法,研究了柔性多体含摩擦碰撞stick-slip过程的全局动力学的精确建模与自动切换仿真问题。基于变拓扑思想,根据分离、碰撞、粘滞接触和滑动接触等状态分别构造相应的约束条件和动力学方程。运用冲量/动量法求解碰撞初始条件;引入切向滑动摩擦力势能的概念描述切向滑动接触力;给出接触、分离、粘滞、正向/逆向滑动状态之间的切换准则,实现了系统全局动力学自动切换。通过算例的数值仿真,分析了滑移/粘滞(微滑动)、正/逆向滑动等复杂非光滑现象,验证了本文提出的模型和算法的有效性。

Abstract

The dynamic simulation including modeling and automatic switching for flexible multibody systems was investigated using Lagrange multiplier method and the high order rigid-flexible coupled theory. Based on variable topology idea, dynamic equations and the corresponding constraint conditions were established, respectively for detachment, impact, viscous contact and slip contact states. The impulse-momentum method was used to solve the impact initial conditions. The concept of tangential sliding friction force potential energy was introduced to describe the corresponding generalized impact forces with Lagrange equations. The switching criteria among contact, detachment, stick and slip were built to realize the global dynamic automatic switching of the system. Examples were numerically simulated to analyze the complex non-smooth phenomena including forward/backward slip and slip/stick( micro slip) to verify the effectiveness of the proposed model and algorithms.
 

关键词

含摩擦碰撞 / 粘滞/滑移 / 接触约束 / 柔性机械臂 / 动力学建模

Key words

frictional impact / stick-slip / contact constraints / flexible robot arm / dynamic modeling

引用本文

导出引用
钱震杰1,章定国2,金诚谦1. 柔性多体系统含摩擦碰撞stick-slip过程动力学仿真[J]. 振动与冲击, 2017, 36(23): 32-37
QIAN Zhenjie 1, ZHANG Dingguo 2,Jin Chengqian 1. Dynamic simulation for flexible multibody systems containing frictional impact and stick-slip processes[J]. Journal of Vibration and Shock, 2017, 36(23): 32-37

参考文献

[1] Pfeiffer F, Foerg M, Ulbrich H. Numerical aspects of non-smooth multibody dynamics[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195(50-51): 6891- 6908.
[2] 董富祥, 洪嘉振. 平面柔性多体系统正碰撞动力学建模理论研究[J]. 计算力学学报, 2010, 27(6): 1042-1048.
 Dong F X, Hong J Z. Study on the modeling theory of the normal impact dynamics for the planar flexible multibody system[J]. Chinese Journal of Computational Mechanics, 2010, 27(6):1042-1048.
[3] 段玥晨, 章定国, 洪嘉振. 作大范围运动柔性梁的一种碰撞动力学求解方法[J]. 机械工程学报, 2012, 48(19):95-102.
 Duan Y, Zhang D G, Hong J Z. Method for Solving the Impact Problem of a Flexible Beam with Large Overall Motion[J]. Journal of Mechanical Engineering, 2012, 48(19):95-102.
[4] 王检耀, 洪嘉振, 刘铸永. 接触碰撞动力学的多变量选取方法[J]. 力学学报, 2014, 46(2):318-322.
 Wang J Y, Hong J Z, Liu Z Y. Multi-variable selection method in contact/impact dynamics[J]. Acta Mechanica Sinica, 2014, 46(2):318-322.
[5] Qi Z H, Luo X M, Huang Z H. Frictional contact analysis of spatial prismatic joints in multibody systems[J]. Multibody System Dynamics, 2011, 26(4):441-468.
[6] Taylor R L, Papadopoulos P. On a finite element method for dynamic contact/impact problems[J]. International Journal for Numerical Methods in Engineering, 1993, 36(12): 2123-2140.
[7] Flores P, Machado M, Seabra E, et al. A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems[J]. Journal of computational and nonlinear dynamics, 2011, 6(1): 011019.
[8] 付士慧, 王琪. 多体系统动力学方程违约修正的数值计算方法[J]. 计算力学学报, 2007, 24(1):44-49.
 FU S H, Wang Q. A numerical method for constraint stabilization of dynamic equations of multi-body systems[J]. Chinese Journal of Computational Mechanics, 2007, 24(1):44-49.
[9] 金栋平, 胡海岩. 碰撞振动及其典型现象[J]. 力学进展,1999,29(2):155- 163.
 Jin D P, Hu H Y. Vibro-impacts and their typical behaviors of mechanical systems[J]. Advances in Mechanics, 1999, 29(2):155-163.
[10] 王琪, 庄方方, 郭易圆, 等. 非光滑多体系统动力学数值算法的研究进展[J]. 力学进展, 2013, 43(1): 101-111.
 Wang Q, Zhuang F F, Guo Y Y, et al. Advances in the research on numerical methods for non-smooth dynamics of multibody systems[J]. Advances in Mechanics, 2013, 43(1):101-111.
[11] 丁千, 翟红梅. 机械系统摩擦动力学研究进展[J].力学进展, 2013, 43(1): 112-131.
 Ding Q, Zhai H M. The advance in researches of friction dynamics in mechanics system[J]. Advances in Mechanics, 2013, 43(1):112-131.
[12] Leine R I, Campen D H V, Glocker C H. Nonlinear Dynamics and Modeling of Various Wooden Toys with Impact and Friction[J]. Journal of Vibration & Control, 2003, 9(1-2):25-78.
[13] Payr M, Glocker C. Oblique Frictional Impact of a Bar: Analysis and Comparison of Different Impact Laws[J]. Nonlinear Dynamics, 2005, 41(4):361-383.
[14] Zhao Z, Liu C S. The analysis and simulation for three-dimensional impact with friction[J]. Multibody System Dynamics, 2007, 18(4):511-530.
[15] 姚文莉, 陈滨, 刘才山,等. 含摩擦的多刚体系统碰撞问题的滑动状态步进法[J]. 应用数学和力学, 2007, 28(12):1448-1454.
 Yao W L, Chen B, Liu C S, et al. Sliding state stepping algorithm for solving impact problems of multi-rigid-body system with joint friction[J]. Applied Mathematics & Mechanics, 2007, 28(12):1621-1627.
[16] 吴胜宝, 章定国. 大范围运动刚体-柔性梁刚柔耦合动力学分析[J]. 振动工程学报, 2011, 24(1): 1-7.
 Wu S B, Zhang D G. Rigid-flexible coupling dynamic analysis of hub-flexible beam with large overall motion[J]. Journal of Vibration Engineering, 2011, 24(1):1-7.

PDF(808 KB)

504

Accesses

0

Citation

Detail

段落导航
相关文章

/