不同粗糙度斜拉索气动力特性和风荷载计算方法研究

刘庆宽1, 2,闫煦东3,李聪辉3,郑云飞3,马文勇1, 2,刘小兵1, 2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 38-44.

PDF(1731 KB)
PDF(1731 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 38-44.
论文

不同粗糙度斜拉索气动力特性和风荷载计算方法研究

  • 刘庆宽1, 2,闫煦东3,李聪辉3,郑云飞3,马文勇1, 2,刘小兵1, 2
作者信息 +

 Aerodynamic forces and wind loads calculation method for stay-cables with different surface roughness

  •  LIU Qingkuan1, 2, YAN Xudong3, LI Conghui3, ZHENG Yunfei3, Ma Wenyong1, 2, Liu Xiaobing1, 2
Author information +
文章历史 +

摘要

大跨径斜拉桥斜拉索上的风荷载对主梁的位移和内力的贡献占全桥的主要部分,准确掌握斜拉索上的风荷载,对于桥梁的抗风设计具有重要的意义。通过风洞试验,得到了8种具有不同表面粗糙度斜拉索的气动力系数随雷诺数的变化规律,研究了粗糙度对斜拉索雷诺数效应和气动力特性的影响,以实桥为例分析了斜拉索最大风荷载的计算方法。结果表明:斜拉索表面的粗糙度对气动力具有明显的影响,随着粗糙度的增大,雷诺数效应随之减弱;不同粗糙度的斜拉索,最大风荷载对应的风速不同,计算方法也不同,实桥设计时应根据斜拉索的具体表面粗糙状态确定其最大风荷载的数值。

Abstract

Most parts of wind loads on a large span cable-stayed bridge are caused by cables. It is very important to determine wind forces on cables exactly for bridge design and analysis. Through wind tunnel tests, aerodynamic forces of 8 types of cables with different surface roughness were measured, the influences of surface roughness on Reynolds number effect and aerodynamic force characteristics were studied, the maximum wind load on a cable of a practical bridge was calculated. Results showed that the cable surface roughness has obvious effects on aerodynamic force; with increase in the cable surface roughness, Reynolds number effect decreases gradually; for different surface roughness of a cable, wind velocities corresponding to the maximum wind loads are different; for real bridge design, the maximum wind loads of cables should be determined according to their surface roughness. 


 

关键词

斜拉索 / 气动力 / 粗糙度 / 雷诺数效应 / 最大风荷载

Key words

stay-cables / aerodynamic forces / surface roughness / Reynolds number effect / maximum wind load

引用本文

导出引用
刘庆宽1, 2,闫煦东3,李聪辉3,郑云飞3,马文勇1, 2,刘小兵1, 2. 不同粗糙度斜拉索气动力特性和风荷载计算方法研究[J]. 振动与冲击, 2017, 36(23): 38-44
LIU Qingkuan1, 2, YAN Xudong3, LI Conghui3, ZHENG Yunfei3, Ma Wenyong1, 2, Liu Xiaobing1, 2.  Aerodynamic forces and wind loads calculation method for stay-cables with different surface roughness[J]. Journal of Vibration and Shock, 2017, 36(23): 38-44

参考文献

[1] 裴岷山,张喜岗,朱斌,等. 斜拉桥的拉索纵桥向风荷载计算方法研究[J]. 中国工程科学,2009, 11(3): 26-30
Pei Minshan, Zhang Xigang, Zhu Bin, Hou Bin, Liu Changpeng. Study on longitudinal wind load calculation method of cables for cable-stayed bridge [J]. ENGINEERING SCIENCES, 2009, 11(3): 26-30
[2] ESDU. Mean forces, pressures and flow field velocities circular cylindrical structures: single cylinder with two-dimensional flow[R]. Item No. 80025, London: ESDU international, 1986
[3] G. Matteoni, C. T. Georgakis. Effects of bridge cable surface roughness and cross-sectional distortion on aerodynamic force coefficients [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2012, 104-106:176-187
[4] Liu Qingkuan, Zhang Feng Ma Wenyong. Experimental study on Reynolds number effect on dry cable galloping of stay cables[C]//Proceedings of the 13th International Conference on Wind Engineering. Amsterdam: The Netherlands, 2011
[5] 希缪著, 刘尚培, 项海帆等译. 风对结构的作用-风工程导论[M]. 上海: 同济大学出版社, 1992: 111
E. Simiu, Liu Shangpei, Xiang Haifan. A wind effects on structures of wind engineering [M]. Shanghai: Tongji University press, 1992: 111. (in Chinese)
[6] JTG/T D60-01-2004 公路桥梁抗风设计规范[S]. 北京:人民交通出版社,2004
JTG/T D60-01-2004 Wind-resistant Design Specification for Highway Bridges [S]. Beijing: China Communications Press, 2004
[7] POULIN S, LAREN A. Drag loading of circular cylinders inclined in the along-wind direction [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(9/10/11): 1350-1363
[8] 李文勃, 林志兴, 杨立波. .超长斜拉索风阻系数及风雨激振的试验研究[J]. 振动测试与诊断, 2005, 25(2): 85-90
LI Wenbo, LIN Zhixing, YAN Libo, Investigation on dray coefficients and rain-wind induced vibration of extremely long stay cables in wind tunnel[J]. Journal of Vibration Testing and Diagnosis, 2005, 25(2): 85-90
[9] 林志兴, 杨立波, 李文勃. 斜拉索顺桥向风阻系数的试验研究[J]. 郑州大学学报: 工学版, 2005, 26(1): 38-41
LIN Zhixing, YAN Libo, LI Wenbo. Experimental study on drag coefficients of stay-cables corresponding to wind direction along the bridge central line[J]. Journal of Zhengzhou University: Engineering Science Editong, 2005, 26(1): 38-41
[10] 王卫华, 李明水, 陈忻. 斜拉索的阻力系数的研究[J]. 空气动力学学报, 2005, 23(3): 389-393
WANG Weihua, LI Mingshui, CHEN Xin. Investigation on drag coefficients of stay-cables [J]. Journal of Aerodynamics, 2005, 23(3): 389-393
[11] ZDRAVKOVICH M M. Flow around circular cylinders [M]. London: Oxford University Press, 1997
[12] CHENG S, IRWIN P A, JAKOBSEN J B, et al. Divergent motion of cables exposed to skewed wind[C]//Proceedings of the 5th International Symposium on Cable Dynamics. Santa Margherita, 2003: 271-278
[13] LAROSE G L, JAKOBSEN J B, SAVAGE M G, et al. Wind tunnel experiments on an inclined and yawed stay cable model in the critical Reynolds number range[C]//Proceedings of the 5th International Symposium on Cable Dynamics. Santa Margherta, 2003: 279-286
[14] GB/T 3505-2009/ISO 4287:1997:产品几何级数规范(GPS)表面结构 轮廓法术语、定义及表面结构参数[S]. 北京:中国标准出版社,2009
GB/T 3505-2009/ISO 4287: 1997: Geometrical Product Specifications (GPS)—Surface texture: Profile method—Terms, definitions and surface texture parameters[S]. Beijing: China Standard Press, 2009
[15] 白桦. 影响桥梁及建筑结构风洞试验结果若干因素研究[D]. 西安: 长安大学, 2012
BAI Hua. Research on the effect of several factors on the wing tunnel test results of bridge and building structure [D]. Xi’an: Chang’an University, 2012
[16] M. M. ZDRAVKOVICH. Flow around circular cylinders [M]. Oxford University Press, Incorporated, 1997
[17] 饶华容, 邓惠斌. 千米级斜拉桥长索架设技术[J]. 中国工程科学, 2009, 11(3): 71-74
RAO Huarong, DENG Huibin. Technology for long cable erection of a thousand-meter scale cable-stayed bridge [J]. Engineering Science, 2009, 11(3): 71-74(in Chinese)
[18] 刘庆宽, 乔富贵, 张峰. 考虑雷诺数效应的斜拉索气动力试验研究[J]. 土木工程学报, 2011, 44(11): 59-65
LIU Qinkuan, QIAO Fugui, ZHANG Feng, Experimental study on cable aerodynamic forces considering Reynolds number effect[J]. China Civil Engineering Journal, 2011, 44(11): 59-65

PDF(1731 KB)

Accesses

Citation

Detail

段落导航
相关文章

/