基于多目标粒子群算法的稀疏分解参数优化

王强 张培林 王怀光 张云强 李一宁

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 45-50.

PDF(1325 KB)
PDF(1325 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 45-50.
论文

基于多目标粒子群算法的稀疏分解参数优化

  • 王强 张培林 王怀光 张云强 李一宁
作者信息 +

Parametric optimization of sparse decomposition based on multi-objective particle swarm optimization algorithm

  • WANG Qiang, ZHANG Pei-lin, WANG Huai-guang, ZHANG Yun-qiang, LI Yi-ning
Author information +
文章历史 +

摘要

针对振动信号稀疏分解过程中存在的复杂参数设置问题,提出利用多目标粒子群算法进行稀疏分解参数优化,以实现振动信号的有效压缩。根据多目标粒子群理论,建立稀疏分解参数优化模型,确定粒子群优化目标函数、待优化参数,分析参数设置与目标函数之间的泛函关系。设计仿真实验,研究数据压缩指标之间的约束关系,指导多目标粒子群算法参数优化,改善数据压缩效果。应用实测数据,验证多目标粒子群算法的参数优化能力,实验结果表明:多目标粒子群算法能够优化振动信号稀疏分解参数,取得良好的振动信号数据压缩效果。

Abstract

Aiming at complex parameter setting in sparse decomposition process of vibration signals, the multi-objective particle swarm optimization algorithm was put forward for parameter optimization of sparse decomposition to realize effective compression of vibration signals. According to the multi-objective particle swarm theory, a model was established to determine objective function for the particle swarm optimization algorithm and parameters to be optimized, and the functional relation among parameters and the objective function was analyzed. A simulation test was designed to study constraint relations among indexes for data compression, guide the parameter optimization of the multi-objective particle swarm optimization algorithm, and improve the effects of data compression. The measured data were used to verify the parameter optimization ability of the multi-objective particle swarm optimization algorithm. The test results showed that the multi-objective particle swarm optimization algorithm can be used to optimize parameters for sparse decomposition of vibration signals, and get the good effects of data compression of vibration signals.



关键词

振动信号 / 稀疏分解 / 多目标粒子群算法 / 参数优化 / 数据压缩

Key words

vibration signal / sparse decomposition / multi-objective particle swarm optimization algorithm / parameter optimization / data compression

引用本文

导出引用
王强 张培林 王怀光 张云强 李一宁. 基于多目标粒子群算法的稀疏分解参数优化[J]. 振动与冲击, 2017, 36(23): 45-50
WANG Qiang, ZHANG Pei-lin, WANG Huai-guang, ZHANG Yun-qiang, LI Yi-ning. Parametric optimization of sparse decomposition based on multi-objective particle swarm optimization algorithm[J]. Journal of Vibration and Shock, 2017, 36(23): 45-50

参考文献

[1] Mallat S, Zhang Zhifeng. Matching pursuits with time frequency dictionaries[J]. IEEE Transacions on Signal Processing, 1993, 41(12): 3397-3415.
[2] 朱会杰, 王新晴, 芮挺, 等. 基于频域信号的稀疏编码在机械故障诊断中的应用[J]. 振动与冲击, 2015, 34(21): 59-64.
ZHU Hui-jie, WANG Xin-qing, RUI Ting, et al. Application of sparse coding based on frequency signals in machinery fault diagnosis[J]. Journal of Vibration and Shock, 2015, 34(21): 59-64.
[3] 黄秋燕, 冯学智, 肖鹏峰. 利用稀疏分解的高分辨率遥感图像线状特征检测[J]. 武汉大学学报•信息科学版, 2014, 39(8): 913-917.
HUANG Qiu-yan, FENG Xue-zhi, XIAO Peng-feng. An approach for linear feature detection from remote sensing images with high spatial resolution based on sparse decomposition[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 913-917.
[4] 王永强, 谢军, 律方成. 基于改进量子粒子群优化稀疏分解的局放信号去噪方法[J]. 电子工程学报, 2015, 30(12): 320-329.
WANG Yong-qiang, XIE Jun, LV Fang-cheng. PD signal denoising method based on improved quantum-behaved particle swarm optimization sparse decomposition[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 320-329.
[5] 陈炳权, 刘宏立. 基于稀疏分解的分块图像压缩编码算法[J]. 湖南大学学报(自然科学版), 2014, 41(2): 95-101.
CHEN Bing-quan, LIU Hong-li. Block Compressed image coding based on sparse decomposition [J]. Journal of Hunan University(Nature Sciences), 2014, 41(2): 95-101.
[6] 王怀光, 张培林, 吴定海, 等. 基于形态提升小波的机械状态监测数据压缩研究[J]. 振动与冲击, 2014, 33(10): 162-166.
WANG Huai-guang, ZHANG Pei-lin, WU Ding-hai, et al. Machinery condition monitoring data compression based on morphological lifting wavelet transformation[J]. Journal of Vibration and Shock, 2014, 33(10): 162-166.
[7] 张新峰, 焦月, 李欢欢, 等. 基于粒子群算法的Universum SVM参数选择[J]. 北京工业大学学报, 2013, 39(6): 840-845.
ZHANG Xin-feng, JIAO Yue, LI Huan-huan, et al. Model paremeter selection of the universum SVM based on particle swarm optimazation[J]. Journal of Beijing University of Technology, 2013, 39(6): 840-845.
[8] 王春光, 刘金江, 孙即祥. 基于稀疏分解的心电数据压缩算法[J]. 中国生物医学工程学报, 2008, 27(1): 13-17.
WANG Chun-guang, LIU Jin-jiang, Sun Ji-xiang. The compression algorithm for electrocardiogram based on sparse decomposition[J]. Chinese Journal of Biomedical Engineering, 2008, 27(1): 13-17.
[9] Y C Pati, R Rezaiifar, P S Krishnapras. Orthogonal matching pursuit recursive function approximation with application to wavelet decomposition[C]//Proceedings of the 27th Asilomar Conference in Signals, System and Computers,California: IEEE Computer,1993. 1-5.
[10] 黄伟, 徐建, 朱大勇, 等. 基于粒子群算法的隔振体系参数优化研究[J]. 湖南大学学报(自然科学版), 2014, 41(11): 58-66.
HUANG Wei, ZU Jian, ZHU Da-yong, et al. Parameters optimization of vibration isolation system based on particle swarm optimization algorithm[J]. Journal of Hunan University(Natural Sciences), 2014, 41(11): 58-66.
[11] Coello, C.A.C, Pulido, et al. Handling multiple objectives with particle swarm optimization[J]. Evolutionary Computation, 2004, 8(3): 256-279.
[12] 李兵. 机械故障信号的数学形态学处理及特征提取方法研究[D]. 石家庄:军械工程学院,2010.

PDF(1325 KB)

Accesses

Citation

Detail

段落导航
相关文章

/