基于贝叶斯理论的拉杆转子模态特性确认

边涛1,谢寿生1,2,任立通1,张乐迪1,刘云龙1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 92-98.

PDF(1879 KB)
PDF(1879 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (23) : 92-98.
论文

基于贝叶斯理论的拉杆转子模态特性确认

  • 边涛1,谢寿生1,2,任立通1,张乐迪1,刘云龙1
作者信息 +

Modal characteristics confirmation of a rod-fastening rotor based on Bayesian theory

  • BIAN Tao1, XIE Shou-sheng1,2, REN Li-tong1, ZHANG Le-di1,LIU Yun-long1
Author information +
文章历史 +

摘要

为了更真实地反映航空发动机高压转子拉杆结构的振动特性,对基于非线性弹塑性滑动模型中不确定参数的变化范围和规律进行研究,提出了基于贝叶斯理论的有限元模型模态特性确认方法。运用贝叶斯理论构建模态特性似然函数,通过马尔可夫蒙特卡罗方法求解不确定参数的后验概率分布,并建立基于稀疏网格配点法的替代模型,减少了蒙特卡罗方法的计算量,使该方法能够适用于大型复杂高压转子结构。以实际的航空发动机高压转子为例,确定高压转子结构特征频率的变化范围和规律,通过与实验模态特征频率对比,证明了该方法的有效性。

Abstract

In order to reflect the real vibration characteristics of rod-fastening rotors of high pressure spool(HPS) in an aero-engine, Here, a FE (finite element) model modal characteristics confirmation method based on Bayesian theory was proposed. An elastoplastic slip model with non-linear hysteretic behavior was introduced to determine regions of uncertain parameters. According to this model, the likelihood function for modal data characteristics was built using Bayesian theory, Bayesian updating procedure was implemented using a multi-level Markov chain Monte Carlo (MCMC) algorithm. In addition, the adaptive hierarchical sparse grid collocation (ASGC) method was used to construct the stochastic surrogate model for the posterior probability distribution calculation of uncertain parameters, it reduced the amount of computation of the MCMC for large FE models like HPS. The real example of an aero-engine’s high pressure rotor was given, the results using this modal characteristics confirmation method were compared with its test data, it was shown that the proposed method can determine regions and varying law of HPS feature frequencies, its effectiveness is verified.


关键词

拉杆结构 / 弹塑性滑动模型 / 贝叶斯理论 / 蒙特卡罗方法 / 实验模态分析

Key words

rod-fastening rotor / elastoplastic slip model / Bayesian theory / Markov chain Monte Carlo method / test modal analysis

引用本文

导出引用
边涛1,谢寿生1,2,任立通1,张乐迪1,刘云龙1. 基于贝叶斯理论的拉杆转子模态特性确认[J]. 振动与冲击, 2017, 36(23): 92-98
BIAN Tao1, XIE Shou-sheng1,2, REN Li-tong1, ZHANG Le-di1,LIU Yun-long1. Modal characteristics confirmation of a rod-fastening rotor based on Bayesian theory[J]. Journal of Vibration and Shock, 2017, 36(23): 92-98

参考文献

[1] 章圣聪,王艾伦.盘式拉杆转子的振动特性研究[J].振动与冲击,2009,28(4):117-120.
   ZHANG Sheng-cong, WANG Ai-lun. Analysis of vibration characteristics of a disk-rod-fastening rotor [J]. Journal of vibration and Shock,2009,28(4):117-120.
[2] 陈学前,杜 强,冯加权.螺栓连接非线性振动特性研究[J].振动与冲击,2009,28(7):196-198.
   CHEN Xue-qian, DU Qiang, FENG Jia-quan. Nonlinear vibrational characteristic of bolt-joints [J]. Journal of vibration and Shock,2009,28(7):196-198.
[3] 汪光明,饶柱石,夏松波.拉杆转子力学模型的研究[J]. 航空学报,1993,14(8): 419-423.
   WANG Guang-ming, RAO Zhu-shi, XIA Song-bo, The analysis of mechanical model of rod fastening rotor [J]. Acta Aeronautice et Astronautice Sinica,1993,14(8): 419-423.
[4] 饶柱石.拉杆组合式特种转子力学特性及其接触刚度的研究[D]. 哈尔滨:哈尔滨工业大学,1992.
   RAO Zhu-shi. Analysis of mechanical characteristics and contacting stiffness of rod-fastening rotor [D]. Harbin:Harbin Institute of Technology,1992.
[5] Abad J., Franco J M, Celorrio R, et al. Design of experiments and energy dissipation analysis for a contact mechanics 3D model of frictional bolted lap joints[J]. Advances in Engineering Software,2012,45(1):42-53.
[6] 张子阳,谢寿生,钱征文等.拉杆结构中弹簧刚度和有限元模型刚度融合修正方法研究[J].振动与冲击,2011,30(11): 53-56.
   ZHANG Zi-yang, XIE Shou-sheng, QIAN Zheng-wen, et al.Fusion stiffness modification of spring and FE model of rod fastening rotor[J]. Journal of vibration and Shock, 2011,30(11):53-56.
[7] Zapico- Valle J L, Alonso-Camblor R., Gonzalez-Martinez M P, et al. A new method for finite element model updating in structural dynamics [J]. Mechanical Systems and Signal Processing,2010,24(7):2137-2159.
[8] 汪荣鑫.数理统计[M]. 西安:西安交通大学出版社, 1986.10.
   WANG Rong-xin. Mathematical statistics [M]. Xi’an :Publish of Xi’an Jiaotong University, 1986.10.
[9] Gilks W R., Richardson S, Spiegelhalter D J. Markov chain Monte Carlo in practice[M]. London:Chapman & Hall, 1996.
[10]Lynch S M. Introduction to applied Bayesian statistics and estimation for social scientists[M]. New York, Springer,2007.
[11]Xiang Ma, Zabaras N. An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method[J]. Inverse Problems 2009, 25(3): 1-27.
[12]Klimke A, Wohlmuth B. Algorithm 847: spinterp: Piecewise multilinear hierarchical sparse grid interpolation in matlab[J]. ACM Transactions on Mathematical Software,2005,31(4):561-579.
[13]Nobile F, Tempone R, Webster C. The Analysis of a Sparse Grid Stochastic Collocation Method for Partial Differential Equations with High-Dimensional Random Input Data[R]. Sandia report, SAND 2007-8093,2007.12.
[14]Smolyak S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[J]. Dokl. Akad. Nauk SSSR,1963,4:240-243.
[15]Mantelli M B H, Milanez F H, Pereira E N.. Statistical model for pressure distribution of bolted joints[J]. Journal of Thermophysics and Heat Transfer,2010,24(2):432-437.
[16] Reh S, Beley J, Mukherjee S, et al. Probabilistic finite    element analysis using ANSYS[J]. Structural Safety, 2006, 28(1-2): 17-43.

PDF(1879 KB)

Accesses

Citation

Detail

段落导航
相关文章

/