基于AR和ARMA模型的多变量非高斯风压模拟

李锦华1 李春祥2 邓莹2 蒋磊2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 103-107.

PDF(1403 KB)
PDF(1403 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 103-107.
论文

基于AR和ARMA模型的多变量非高斯风压模拟

  • 李锦华1   李春祥2   邓莹2   蒋磊2
作者信息 +

Simulation of multivariate non-Gaussian fluctuating wind pressure based on AR and ARMA models

  • LI Jin-hua1   LI Chun-xiang2   JIANG Lei 2  DENG Ying 2
Author information +
文章历史 +

摘要

基于多变量非高斯随机过程间的相关性,将发展的单变量非高斯过程自回归和自回归滑动平均(AR和ARMA)模型模拟算法扩展至多变量非高斯过程的数值模拟。通过AR和ARMA模型系数考虑多变量非高斯过程间的相关性,建立多变量非高斯过程AR和ARMA模型的模拟算法。多变量非高斯风压的数值模拟表明:AR和ARMA模型算法能有效地模拟低斜度、中斜度和高斜度的多变量非高斯随机过程。

Abstract

Based on the correlativity of multivariate non-Gaussian random processes, autoregressive (AR) and autoregressive moving average (ARMA) models proposed for simulating a univariate non-Gaussian stochastic process were extended to simulate multivariate non-Gaussian stochastic processes. Through using coefficients of AR and ARMA models to consider the correlativity of multivariate non-Gaussian processes, the simulation algorithm for multivariate non-Gaussian processes was established with AR and ARMA models. The numerical simulations for multivariate non-Gaussian fluctuating wind pressure indicated that the new simulation algorithm with AR and ARMA models can effectively simulate multivariate non-Gaussian random processes with low skewness, middle one, and high one, respectively.
 

关键词

多变量非高斯随机过程 / 非高斯脉动风压 / 自回归模型 / 自回归滑动平均模型

Key words

multivariate non-Gaussian random processes / non-Gaussian fluctuating wind pressure / autoregressive (AR) model / autoregressive moving average (ARMA) model

引用本文

导出引用
李锦华1 李春祥2 邓莹2 蒋磊2. 基于AR和ARMA模型的多变量非高斯风压模拟[J]. 振动与冲击, 2017, 36(24): 103-107
LI Jin-hua1 LI Chun-xiang2 JIANG Lei 2 DENG Ying 2. Simulation of multivariate non-Gaussian fluctuating wind pressure based on AR and ARMA models[J]. Journal of Vibration and Shock, 2017, 36(24): 103-107

参考文献

1. Seong, SH, Peterka, JA. Computer simulation of non-Gaussian multiple wind press time series. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72: 95-105.
2. Seong, SH, Peterka, JA. Digital generation of surface-pressure fluctuations with spiky features. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 73(2): 181-192.
3. Suresh Kumar, K, Stathopoulos, T. Computer simulation of fluctuating wind pressures on low building roofs. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 485-495.
4. Gurley, K, Kareem, A. Analysis, interpretation, modeling and simulation of unsteady wind and pressure data. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 657-669.
5. Samaras, E, Shinozuka, M, Tsurui, A. ARMA representation of random process. Journal of Engineering Mechanics, ASCE, 1985, 111(3): 449-461.
6. 李春祥, 谈雅雅, 李锦华. 基于ARMA模型模拟高架桥的脉动风速时程. 振动与冲击, 2009, 28(6): 46-51.
Li Chun-Xiang, Tan, Ya-Ya, Li Jin-Hua. Simulation of fluctuating wind speed time series applied on overpass bridges with resorting to ARMA model. Journal of Vibration and Shock, 2009, 28(6): 46-51.
7. 李锦华, 李春祥. 土木工程随机风场数值模拟研究的进展. 振动与冲击, 2008, 27(9): 116-125.
Li Jin-Hua, Li Chun-Xiang. Development of Numerical Simulations for Stochastic wind Fields in Civil Engineering. Journal of Vibration and Shock, 2008, 27(9): 116-125.
8. Li Jinhua, Li Chunxiang. Simulation of non-Gaussian stochastic process with target power spectral density and lower-order moments. Journal of Engineering Mechanics,ASCE, 2012, 138(5): 391-404.

PDF(1403 KB)

Accesses

Citation

Detail

段落导航
相关文章

/