基于动力反共振结构的周期细直梁纵向局域共振带隙研究

刘扭扭1,2,张振果1,2,徐时吟1,2,华宏星,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 142-147.

PDF(644 KB)
PDF(644 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 142-147.
论文

基于动力反共振结构的周期细直梁纵向局域共振带隙研究

  • 刘扭扭1,2,张振果1,2,徐时吟1,2,华宏星 ,2
作者信息 +

Local resonance bandgap of a periodic slender beam based on dynamic anti-resonance structure

  • LIU niu-niu1.2,ZHANG zhen-guo1.2,XU shi-yin1.2,HUA Hong-xing2
Author information +
文章历史 +

摘要

引入动力反共振结构,构建了一种具有低频局域共振带隙的新型细直梁周期结构。基于传递矩阵法和Bloch理论推导了无限周期细直梁纵向振动弹性波能带结构的理论模型,利用有限元法建立了有限周期细直梁纵向振动传输特性的数值模型,仿真结果与理论计算基本吻合。通过分析局域共振带隙与共振子等效质量和等效刚度的关联,阐述了动力反共振周期结构对细直梁纵向振动的隔振机理,给出了局域共振带隙的变化规律。研究表明,与采用弹簧质量为局域共振子的细直梁周期结构相比,应用动力反共振结构能够实现更低的带隙初始频率。

Abstract

Taking a dynamic anti-resonance vibration isolator (DAVI) as a resonator, a periodic structure was constructed by attaching periodic arrays of local resonators to a beam. This structure could exhibit lower local resonance bandgap initial frequency. Based on the transfer matrix method and the Bloch theory, the theoretical model for longitudinal vibration elastic wave energy band structure of an infinite periodic slender beam was derived. Using the finite element method, the numerical model for longitudinal vibration transmission characteristics of a finite periodic slender beam was built. The simulation results agreed well with those of theoretical calculation. By analyzing the correlation between local resonance bandgap and DAVI resonator’s equivalent mass & stiffness, the vibration isolation mechanism of a dynamic anti-resonance periodic structure against longitudinal vibration of a slender beam was presented. The variation law of the local resonance bandgap was deduced. The study showed that compared with the spring-mass local resonator, the dynamic anti-resonance structure can be used to realize lower bandgap initial frequency.


关键词

局域共振 / 细直梁 / 声子晶体 / 动力反共振 / 传递矩阵法

Key words

local resonance / slender beam / photonic crystal / dynamic anti-resonance / transfer matrix method

引用本文

导出引用
刘扭扭1,2,张振果1,2,徐时吟1,2,华宏星,2. 基于动力反共振结构的周期细直梁纵向局域共振带隙研究[J]. 振动与冲击, 2017, 36(24): 142-147
LIU niu-niu1.2,ZHANG zhen-guo1.2,XU shi-yin1.2,HUA Hong-xing2. Local resonance bandgap of a periodic slender beam based on dynamic anti-resonance structure[J]. Journal of Vibration and Shock, 2017, 36(24): 142-147

参考文献

[1] Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites [J]. Physical Review Letters, 1993, 71(13): 2022.
[2] Liu Z, Chan C T, Sheng P.Analytic model of phononic crystals with local resonances [J]. Physical Review B, 2005, 71(1): 014103.
[3] Lai Y, Zhang Z Q. Large band gaps in elastic phononic crystals with air inclusions [J]. Applied physics letters, 2003, 83(19): 3900-3902.
[4] 王刚.声子晶体局域共振带隙机理及减振特性研究[D].长沙:国防科技大学, 2005.
WANG Gang.Research on the mechanism and the vibration attenuation characteristic of locally resonant band gap in phononic crystals [D].Chang Sha:National university of defense technology,2005.
[5] Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
[6] 郁殿龙.基于声子晶体理论的梁板类周期结构振动带隙特性研究[D].长沙:国防科学技术大学, 2006.
YU Dian-long. Research on the vibration band gaps of periodic beams and plates based on the theory of phononic crystals[D].Chang Sha: National university of defense technology,2006.
[7] 肖勇.局域共振型结构的带隙调控与减振降噪特性研究[D].长沙:国防科学技术大学, 2012.
XIAO Yong.Locally resonant structures:Band gap tuning and properties of vibration and noise reduction[D]. Chang Sha: National university of defense technology,2012.
[8] Flannelly W D. Dynamic antiresonant vibration isolator[P]: U.S. Patent 3,322,379. 1967-5-30.
[9] Rita A D, McGarvey J H, Jones R. Helicopter rotor isolation evaluation utilizing the dynamic antiresonant vibration isolator [J]. Journal of the American Helicopter Society, 1978, 23(1): 22-29.
[10] Braun D. Development of antiresonance force isolators for helicopter vibration reduction[J]. Journal of the American Helicopter Society, 1982, 27(4): 37-44.
[11] Braun D. Vibration isolator particularly of the antiresonance force type: U.S. Patent 4,781,363 [P]. 1988-11-1.
[12] Ivovich V A, Savovich M K. Isolation of floor machines by lever-type inertial vibration corrector[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2001, 146(4): 391-402.
[13] Platus D L. Vibration isolation system[P]: U.S. Patent 3,606,233. 1971-9-20.
[14] Yilmaz C, Kikuchi N. Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications[J]. Journal of Sound and Vibration, 2006, 291(3): 1004-1028.
[15] 方俊鑫,陆栋. 固体物理学[M]. 上海:上海科学技术出版社,1980.

PDF(644 KB)

Accesses

Citation

Detail

段落导航
相关文章

/