基于自激冰振的风力机海冰载荷分析

叶柯华1,李春1,2,杨阳1,孙瑞1,张万福1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 177-183.

PDF(2401 KB)
PDF(2401 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 177-183.
论文

基于自激冰振的风力机海冰载荷分析

  • 叶柯华1,李春1,2,杨阳1,孙瑞1,张万福1,2
作者信息 +

Sea-ice load analysis of offshore wind turbines based on self-excited ice induced vibration

  • YE Kehua1   LI Chun1.2   YANG Yang1   SUN Rui1   ZHANG Wanfu1.2
Author information +
文章历史 +

摘要

海冰载荷是严寒海区近海风力机面临的主要载荷之一,具有作用力大、持续时间长和振动特性复杂等特点,对风力机结构尤其是塔架的动态响应具有严重影响。为研究海冰载荷对风力机影响,采用NREL 5 MW 近海3叶片水平轴风力机为研究对象,基于Kaimal风速谱建立湍流风场,采用自激冰振模型和FAST程序,计算海冰载荷作用下风力机塔基剪切力,得出以下结论:因海冰强度“负坡段”,风力机受海冰作用在中低冰速时会发生自激振动;自激振动造成了塔基剪切力显著增加,增幅随冰厚增加而减少;塔基前后向剪切力波动高于侧向;海冰载荷造成塔顶位移在1.1Hz附近幅值增加。

Abstract

Sea-ice load is one of the main loads of offshore wind turbines in severe cold sea regions, it has features of large action force, lasting as long and complex vibration characteristics. It has great influences on dynamic responses of wind turbines, especially, the tower of wind turbines. To study influences of sea-ice load on wind turbines, a NREL 5 MW offshore wind turbine was taken as a study object. Based on Kaimal wind speed spectrum, a turbulence wind field was built. The self-excited ice induced vibration model and FAST program were adopted to calculate shear forces exerted on the tower base of the turbine under the action of sea-ice load. The results showed that due to the “negative slope” of sea-ice strength, the wind turbine performs a self-excited vibration under the action of sea-ice with low or medium ice velocity; the self-excited vibration makes shear forces exerted on the tower base of the turbine grow obviously, their increasing level decreases with increase in thickness of sea-ice; shear forces’ fluctuation in tower base forward-backward direction is bigger than that in tower base left side-right side direction; sea-ice load leads to increase in the tower top displacement amplitude near 1.1Hz.

关键词

/ ä / ttä / nen自激冰振;近海风力机;塔基剪切力;凯恩(Kane)方法

Key words

Määttänen self-excited ice induced vibration / offshore wind turbine / shear force on tower base / Kane method

引用本文

导出引用
叶柯华1,李春1,2,杨阳1,孙瑞1,张万福1,2. 基于自激冰振的风力机海冰载荷分析[J]. 振动与冲击, 2017, 36(24): 177-183
YE Kehua1 LI Chun1.2 YANG Yang1 SUN Rui1 ZHANG Wanfu1.2. Sea-ice load analysis of offshore wind turbines based on self-excited ice induced vibration[J]. Journal of Vibration and Shock, 2017, 36(24): 177-183

参考文献

[1] 李春, 叶舟, 高伟, 等. 现代陆海风力机计算与仿真[M]. 上海: 上海科学技术出版社, 2012.
Li Chun, Ye Zhou, Gao Wei, et al. Modern wind turbine calculation and simulation on land and ocean[M]. Shanghai: Shanghai Science and Technology Press, 2012.
[2] 张丰豪, 何榕. 基于柔性多体动力学的风力发电机固有频率研究[J]. 中国电机工程学报, 2014, 34(11): 1807-1814.
Zhang Fenghao, He Rong. Natural frequency analysis of wind turbine based on flexible mulit-body dynamics[J]. Proceedings of The CSEE, 2014, 34(11): 1807-1814.
[3] Jonkman. Jason M, Marshall L, et al. FAST User’ Guide[R]. NREL/EL-500-38230, National Renewable Energy Laboratory, 2005.
[4] C.G.Gebhardt, B.A.Roccia. Non-linear aeroelasticity: an approach to compute the response of three-blade large-scale horizontal-axis wind turbines[J]. Rnewable Energy, 2014, 66: 495-514.
[5] Zhao X, Maißer P, Wu J. A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element[J]. Renewable Energy, 2007, 32(3):532-546.
[6] Martin O L H. 风力机空气动力学[M]. 肖劲松, 译. 北京: 中国电力出版社, 2012.
Martin O L H. Aerodynamics of wind turbines[M]. Translated by Xiao Jinsong. Beijing: China Electric Power Press, 2012.
[7] Michailides C, Gao Z, Moan T. Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type Wave Energy Converters[J]. Renewable Energy, 2016, 93: 675-690.
[8] 杨阳, 李春, 缪维跑, 等. 湍流风场与地震激励联合作用下的风力机结构动力学响应[J]. 振动与冲击, 2015, 34(21): 136-143.
Yang Yang, Li Chun, Miao Weipao, et al. Response of structural dynamic charateristics of wind turbine operating in turbulent wind combined with Seismic Motion[J]. Journal of Vibration and Shock, 2015: 34(21): 136-143.
[9] 李新一, 祁文军. 水平轴风力机叶片在风沙流场中的数值模拟[J]. 现代制造工程, 2014(1): 64-67.
Li Xinyi, Qi Wenjun. Numerical simulation of horizontal wind turbine blad in the sand-flow field[J]. Modern Manufacturing Engineering, 2014(1): 64-67.
[10] 李静, 陈健云, 陈小波, 等. 海上风力发电体系在风-冰作用下的动力反应[J]. 太阳能学报, 2013, 34(7):1234-1240.
Chen Jing, Chen Jianyun, Chen Xiaobo, et al. Dynamic responses of analysis of wind turbine tower subjected to wind force and ice exction. acta Energiae Solaris Sinica, 2013, 34(7):1234-1240.
[11] 周国龙, 叶舟, 成欣, 等. 垂荡板对传统Spar平台水动力特性的影响[J]. 水资源与水工程学报, 2015, 26(4): 143-148.
Zhou Guolong, Ye Zhou, Chen Xin, et al. Influence of heave plate on hydrodynamic characteristics of traditional spar platform[J]. Journal of Water Resources & Water Engineering, 2015, 26(4): 143-148.
[12] 丁勤卫, 李春, 杨阳, 等. 极限海况下三种漂浮式风力机平台的动态响应对比[J]. 水资源与水工程学报, 2015, 26(1): 159-165.
Ding Qinwei, Li Chun, Yang Yang, et al. Comparison of dynamic response for three floating wind turbine platformsunder extreme sea situation[J]. Journal of Water Resources & Water Engineering, 2015, 26(1): 159-165.
[13] Barker A, Timco G, Gravesen H, et al. Ice loading on Danish wind turbines Part 1: dynamic model tests[J]. Cold Regions Science & Technology, 2005, 41(1): 1-23.
[14] Gravesen H, Sørensen S L, Vølund P, et al. Ice loading on Danish wind turbines: Part 2. Analyses of dynamic model test results[J]. Cold Regions Science & Technology, 2005, 41(1):25-47.
[15] 柳春图, 段梦兰. 海冰工程中的结构力学问题[J]. 机械强度, 1995, 17(3): 7-20.
Liu Chuntu, Duan Menglan. Problem of structural mechanics in sea ice engineering[J]. Journal of Mechanical Strength, 1995, 17(3): 7-20.
[16] 黄焱. 冰激海洋平台振动的动力模型试验研究[D]. 天津: 天津大学, 2004.
Huang Yan. The study of ice induced vibration on marine platform by dynamic model Test[J]. Tianjin: Tianjin Unversity, 2004.
[17] 刘延柱, 洪嘉振. 多刚体系统动力学[M]. 北京: 高等教育出版社, 1989.
Liu Yanzhu, Hong Jiazhen. Dynamic multibody systems[M]. Beijing: Higher Education Press: 1989.
[18] 徐继祖. 海冰引起的结构振动[J]. 海洋工程, 1986, 4(2): 42-47.
Xu Jizu. The structure vibration caused sea ice[J]. The Ocean Engineering, 1986, 4(2): 42-47.
[19] 张力. 导管架海洋平台冰激振动控制的实验研究[D]. 大连: 大连理工大学, 2008.
Zhang Li. Experimental study on ice-induced vibration mitigation of jacket offshore platform[D]. Dalian: Dalian Unversity of Technology, 2008.
[20] Peyton H R. Sea Ice Foreces: Ice pressures against structures[C]. Ottawa Canda: Proceedings of Conference on Ice Pressures Against Structure, 1966.
[21] Neill C R. Dynamic ice forces on piers and piles. An assessment of design guidelines in the light of recent research[J]. Canadian Journal of Civil Engineering, 1976, 3(3):305-341.
[22] Matlock H, Dawkins W P, Panak J J. Analytical model for ice-structure interaction[J]. Journal of the Engineering Mechanics Division, 2014, 97(4):1083-1092.
[23] 王翎宇, 徐继祖. Määttänen模型在多腿结构上应用[J]. 中国海上油气(工程), 1992, 4(5): 43-49.

PDF(2401 KB)

Accesses

Citation

Detail

段落导航
相关文章

/