摘要
为研究结构不等间距布置对圆柱结构声学性能影响的一般规律,应用有限元方法对等间距与不等间距加肋圆柱壳模型的振动响应进行计算,并以壳体法向的振动位移响应为输入,求取模型的均方法向速度级声学传递函数,并采用波数谱分析方法将壳体在空间域中的振动位移响应转换到波数域上,从而将振动分离为多种幅值不同的简谐波的叠加,方便从振动机理上解释结构不等间距布置对圆柱壳结构声学性能的影响。研究表明:肋骨的不等间距布置相比等间距布置对圆柱壳结构声学性能有较大改善,虽然在止带频段使得壳体局部振动增大,但在通带频段却能使振动大幅降低。
Abstract
The finite element method was used to calculate vibration responses of stiffened cylindrical shells with equal spacing arrangement and unequal spacing one. Taking vibration displacements in normal direction of these shells as inputs, the mean square normal velocity level acoustic transfer function of a shell model was obtained. In order to explain the effects of unequal spacing arrangement of structures on structural acoustic characteristics of cylindrical shells from the vibration mechanism, the wave number spectrum analysis method was used to transfrom vibration displacement responses of shells from spatial domain to wave number domain to decompose a shell vibration into a superposition of various harmonic waves with different amplitudes. The results showed that comparing with the structural acoustic characteristics of cylindrical shells stiffened with equal spacing arrangement of ribs, those of cylindrical shells with unequal spacing arrangement of ribs are greatly improved; ribs’ unequal spacing arrangement makes shell local vibration grow within the stopband frequency band, but it makes shell vibration drop significantly within the passband one.
关键词
圆柱壳 /
不等间距 /
波数谱 /
结构声学
{{custom_keyword}} /
Key words
cylindrical shell /
unequal spacing /
wave number spectrum /
structural acoustic characteristics
{{custom_keyword}} /
谭 路,纪 刚,周其斗,张纬康.
结构不等间距布置对圆柱壳结构声学性能的影响[J]. 振动与冲击, 2017, 36(24): 189-194
TAN Lu, JI Gang, ZHOU Qi-dou, ZHANG Wei-kang.
Influence of unequal spacing arrangement of structures on structural acoustic characteristics of cylindrical shells[J]. Journal of Vibration and Shock, 2017, 36(24): 189-194
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李正良,胡浩,于伟.正交加筋圆柱壳-球壳组合结构自由振动分析[J].振动与冲击,2015,34(22):129-137.
LI Zheng-liang,HU Hao,YU Wei.Free vibration of joined and orthogonally stiffened cylindrical-spherical shells [J].Journal of Vibration and Shock,2015,34(22):129-137.
[2] D. J. Mead,Y. Yaman.The response of infinite periodic beams to point harmonic forces: a flexural wave analysis[J].Journal of Sound and Vibration,1991,144(3):507-530.
[3] C. H. Hodges,J. Woodhouse.Confinement of vibration by one-dimensional disorder I: theory of ensemble averaging [J].Journal of Sound and Vibration,1989,130(2):237-251.
[4] C. H. Hodges,J. Woodhouse.Confinement of vibration by one-dimensional disorder II: a numerical experiment on different ensemble averages[J].Journal of Sound and Vibration,1989,130(2):253-268.
[5] Douglas M. Photiadis,Brian H. Houston.Anderson localization of vibration on a framed cylindrical shell[J].The Journal of Acoustical Society of America,1999,106(3):1377-1391.
[6] Martin H. Marcus,Brian H. Houston,Douglas M. Photiadis.Wave localization on a submerged cylindrical shell with rib aperiodicity[J].The Journal of Acoustical Society of America,2001,109(3):865-869.
[7] A. S. Bansal.Flexural waves and deflection mode shapes of periodic and disordered beams[J].The Journal of Acoustical Society of America,1982,72(2):476-481.
[8] A. S. Bansal.Free waves in periodically disordered systems: natural and bounding frequencies of unsymmetric systems and normal mode localization[J].Journal of Sound and Vibration,1997,207(3):365-382.
[9] C. H. Hodges,J. Woodhouse.Vibration isolation from irregularity in a nearly periodic structure: Theory and measurements[J].The Journal of Acoustical Society of America,1983,74(3):894-905.
[10] M. P. Castanier,C. Pierre.Individual and interactive mechanisms for localization and dissipation in a mono-coupled nearly-periodic structure[J].Journal of Sound and Vibration,1993,168(3):479-505.
[11] D. Bouzit, C. Pierre.An experimental investigation of vibration localization in disordered multi-span beams[J].Journal of Sound and Vibration,1995,187(4):649-669.
[12] A. S. Bansal.Collective and localized modes of mono-coupled multi-span beams with large deterministic disorders[J].The Journal of Acoustical Society of America,1997,102(6):3806-3809.
[13] G. P. Eatwell.Free-wave propagation in an irregularly stiffened, fluid-loaded plate[J].Journal of Sound and Vibration,1983,88(4):507-522.
[14] Douglas M. Photiadis.Anderson localization of one-dimensional wave propagation on a fluid-loaded plate[J].The Journal of Acoustical Society of America,1992,91(2):771-780.
[15] P. W. Anderson.Absence of diffusion in certain random lattices[J].Physical Review.1958,109(5):1492-1505.
[16] Kazushige Ishii.Localization of eigenstates and transport Phenomena in the one-dimensional disordered system[J].Progress of Theoretical Physics Supplement,1973,53(53):77-138.
[17] M. B. Sobnack,D. G. Crighton.Anderson localization effects in the transmission of energy down an irregularly ribbed fluid-loaded structure[J].The Royal Society,1994,444:185-200.
[18] A. J. Cooper,D. G. Crighton.Response of irregularly ribbed elastic structures, under fluid loading, to localized excitation[J].The Royal Society,1999,455:1083-1105.
[19] P. W. Anderson,D. J. Thouless,E. Abrahams,etc.A new method for a scaling theory of localization[J].Physical Review.1980,B22:3519-3526.
[20] C. H. Hodges.A simple interpretation of the absence of quantum diffusion for one and two dimensional disorder[J].Journal of Physics C: Solid State Physics.1981,14:247-253.
[21] 谭路,纪刚,张纬康,等.采用波数域方法分析细长柱壳的振动与声辐射特性[J].海军工程大学学报,2013,25(3):66-71.
TAN Lu,JI Gang,ZHANG Wei-kang,et al.Slender cylindrical vibration and radiation by use of wave-number domain approach[J].Journal of Naval University of Engineering,2013,25(3):66-71.(in Chinese)
[22] C. H. Hodges.Confinement of vibration by structural irregularity[J].Journal of Sound and Vibration,1982,82(3):411-424.
[23] D. J. Mead.Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995[J].Journal of Sound and Vibration,1996,190(3):495-524.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}