纵弯复合型超声椭圆振动辅助抛光光纤阵列系统设计

陈涛1,2,刘德福1,2,严日明1,余青1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 242-249.

PDF(1956 KB)
PDF(1956 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 242-249.
论文

纵弯复合型超声椭圆振动辅助抛光光纤阵列系统设计

  • 陈涛1,2,刘德福1,2,严日明1,余青1
作者信息 +

Design of longitudinal bending compound mode ultrasonic elliptical vibration-assisted fiber array polishing system

  • CHEN Tao 1,2  LIU De–fu 1,2  YAN Ri-ming1  YU Qing1
Author information +
文章历史 +

摘要

对现有的化学机械抛光工艺难以满足光纤阵列组件高质量和高效率的要求,根据杆件的纵向振动和弯曲振动基本方程,设计了一种纵弯复合超声椭圆振动装置,用于光纤阵列组件的超声椭圆振动辅助化学机械抛光,以提高光纤阵列组建端面的抛光质量和抛光效率。本文设计的纵弯复合超声振动系统实现了36kHz下纵向4阶和弯曲13阶的同频超声振动。振幅测试试验结果表明,超声椭圆振动双向振幅分别为3μm和2.5μm,超声椭圆振动辅助化学机械抛光后的光纤端面粗糙度达到27.58nm。

Abstract

Conventional chemical mechanical polishing process is hard to meet requirements of high quality and high efficiency for fiber array components polishing. Based on basic eqrations for rods’ longitudinal vibration and bending vibration, a longitudinal-bending compound mode ultrasonic elliptical vibration device was designed to conduct ultrasonic elliptical vibration-assisted chemical mechanical polishing fiber array components to improve the polishing quality and polishing efficiency of fiber array component end faces. The designed longitudinal-bending compound mode ultrasonic elliptical vibration system realized a compound mode ultrasonic vibration at the same frequency of 36kHz with a longitudinal 4th mode and a bending 13th mode. The polishing test results showed that the two-direction amplitudes of the realized ultrasonic elliptical vibration are 3μm in longitudinal direction and 2.5μm in lateral direction, the roughness of the polished end face of fiber array components reaches 27.58nm.



关键词

超声椭圆振动 / 光纤阵列 / 有限元分析 / 阻抗测试 / 化学机械抛光

Key words

ultrasonic elliptical vibration / fiber array / FEA / impedance / chemical mechanical polishing

引用本文

导出引用
陈涛1,2,刘德福1,2,严日明1,余青1. 纵弯复合型超声椭圆振动辅助抛光光纤阵列系统设计[J]. 振动与冲击, 2017, 36(24): 242-249
CHEN Tao 1,2 LIU De–fu 1,2 YAN Ri-ming1 YU Qing1. Design of longitudinal bending compound mode ultrasonic elliptical vibration-assisted fiber array polishing system[J]. Journal of Vibration and Shock, 2017, 36(24): 242-249

参考文献

[1] Avram E, Mahmood W, OzerM. Quantification of scattering from fiber surface irregularities[J]. Journal of Lightwave Technology, 2002, 20(4): 634-637.
[2] 刘德福, 段吉安, 钟掘. 光纤端面研磨加工的表面质量[J]. 机械工程学报, 2006, 42(2): 187-191.
Surface quality in end-face lapping of optical fiber[J]. Chinese Journal of Mechanical Engineering, 2006, 42(2): 187-191.
[3] 王铭杰. 平面光波导与光纤阵列的耦合封装研究[D]. 大连:大连理工大学, 2013.
WANG Ming-jie. The coupling and package research of planar lightwave circuit with fiber array[D]. Dalian: Dalian University of Technology, 2013.
[4] Hu Qing, Liu De-fu, Zou Wen-bin. Material removal model and experimental analysis in the CMP of Si-based fiber array[C]. The 5th International Conference on Manufacturing Science and Engineering, Shanghai, P.R. China: Advanced Materials Research, 2014, 2345-2365.
[5] Xu Wen-hu, Lu Xin-chun, Pan Guo-shun, et al. Effects of the ultrasonic flexural vibration on the interaction between the abrasive particles; pad and sapphire substrate during chemical mechanical polishing(CMP)[J]. Applied Surface Science, 2011, 257(7): 2905-2911.
[6] 陈涛,刘德福,佘亦曦,等. 光纤阵列的超声椭圆振动辅助化学机械抛光[J].中国表面工程. 2016, 29(3):132-138.
CHEN Tao, LIU De-fu, SHE Yi-xi, et al. Ultrasonic Elliptical Vibration Assisted Chemical Mechanical Polishing for Fiber Array[J]. China Surface Engineering. 2016, 29(3):132-138.
[7] Xu Wen-hu, Lu Xin-chun, Pan Guo-shun, et al. Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate[J]. Applied Surface Science, 2010, 256(12): 3936-3940.
[8] 唐军, 赵波. 单激励纵扭复合超声铣削系统研究. 振动与冲击[J], 2015, 34(6): 57-61.
TANG Jun, ZHAO Bo. A new longitudinal-torsional composite ultrasonic milling system with a single excitation[J]. Journal of Vibration and Shock. 2015, 34(6): 57-61.
[9] 龚书娟, 张长青, 郭吉丰. 纵扭复合型超声波电机纵振动数学模型[J]. 声学学报, 2009, 34(4): 325-333.
GONG Shu-juan. ZHANG Chang-qing, GUO Ji-feng. The longitudinal-vibration model of the hybrid longitudinal-torsional ultrasonic motor[J]. Acta Acustica, 2009, 34(4): 325-333.
[10] Suzuki H, Hamada S, Okino T, et al. Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing[J]. Manufacturing Technology, 2010, 59(1): 347-350.
[11] 周光平. 超声振动系统的纵-弯和扭-弯复合振动[J]. 声学学报, 2001, 26(5): 435-439.
ZHOU Guang-ping. Analysis of longitudinal-flexural and torsional-flexural complex-mode vibration of ultrasonic vibration systems[J]. Acta Acustica. 2001, 26(5): 435-439.
[12] 袁松梅, 刘明. 纵-扭复合超声振动加工系统设计及频率简并研究[J]. 振动与冲击, 2016, 35(5): 8-13.
YUAN Song-mei, LIU Ming. Design of a longitudinal-torsional composite ultrasonic vibration machining system and natural frequencies merging[J]. Journal of Vibration and Shock. 2016, 35(5): 8-13.
[13] 曹凤国. 超声加工[M]. 北京: 化学工业出版社, 2014.
CAO Feng-guo. Ultrasonic Machining[M]. Beijing: Chemical Industry Press, 2014.
[14] Yuji Watanabe, Yoneo Tsuda, Eiji Mori. A longitudinal flexural complex mode ultrasonic high power transducer system with one dimensional construction[J]. Japanese Journal of Applied Physics, 1993, 32(58): 2430-2434.

PDF(1956 KB)

Accesses

Citation

Detail

段落导航
相关文章

/