基于改进萤火虫算法优化BP神经网络的水电站厂房振动预测

宋志强,耿聃,苏晨辉,刘云贺

振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 64-69.

PDF(1051 KB)
PDF(1051 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (24) : 64-69.
论文

基于改进萤火虫算法优化BP神经网络的水电站厂房振动预测

  • 宋志强,耿聃,苏晨辉,刘云贺
作者信息 +

Vibration prediction of a hydro-power house base on IFA-BPNN

  • SONG Zhiqiang, GENG Dan, SU Chenhui, LIU Yunhe
Author information +
文章历史 +

摘要

利用萤火虫算法优化BP神经网络权值和阈值基础上,建立水电站厂房振动响应预测模型。针对萤火虫算法存在的收敛速度慢、易陷入局部最优等问题,引入动态随机局部搜索机制加快收敛速度,对当前最优解进行变异操作避免陷入局部最优,提出动态步长更新措施提高计算精度,改进最优解振荡问题。仿真实例表明,基于改进萤火虫算法优化的BP网络模型预测精度和收敛速度等性能得到明显改善,可用于水电站厂房结构振动响应预测。

Abstract

A hydro-power house vibration prediction model was built based on the BP neural network optimized with the improved firefly algorithm (IFA-BPNN). Aiming at some disadvantages of FA including slow convergence, and easy to fall in local optimal values, a dynamic random local searching algorithm was introduced to speed up the convergent velocity, and do some mutation operations to avoid the optimization to fall into local optimal values.  A dynamic step length updating measure was proposed to improve the accuracy of the optimization, and avoid the optimal solutions’ oscillation problem. Simulation examples showed that the prediction accuracy and convergent speed of the IFA-BPNN method are obviously improved, it can be used to predict vibration responses of a hydro-power house.

 

关键词

水电站厂房 / 振动 / 萤火虫算法 / 神经网络

Key words

hydro-power house / vibration / improved firefly algorithm (IFA) / back-propagation neural network (BPNN)

引用本文

导出引用
宋志强,耿聃,苏晨辉,刘云贺. 基于改进萤火虫算法优化BP神经网络的水电站厂房振动预测[J]. 振动与冲击, 2017, 36(24): 64-69
SONG Zhiqiang, GENG Dan, SU Chenhui, LIU Yunhe. Vibration prediction of a hydro-power house base on IFA-BPNN[J]. Journal of Vibration and Shock, 2017, 36(24): 64-69

参考文献

[1] 马震岳,董毓新. 水电站机组及厂房振动的研究与治理[M]. 北京:中国水利水电出版社,2004.
    MA Zhenyue, DONG Yuxin. Vibration and its corrective actions of water turbine generator set and power house [M]. Beijing: China Water &Power Press, 2004.
[2] 马震岳,孙万泉,陈维江. 基于遗传算法的地下发电厂房动态识别[J]. 大连理工大学学报,2004,3(44):292-296.
   MA Zhenyue, SUN Wanquan, CHEN Weijiang. Dynamic identification for underground power house based on genetic algorithm [J]. Journal of Dalian University of Technology, 2004,3(44):292-296.
[3] 练继建,张辉东,王海军. 水电站厂房结构振动响应的神经网络预测[J]. 水利学报,2007,3(38):361-364.
    Lian Jijian, ZHANG Huidong, WANG Haijun. Prediction of vibration response of powerhouse structures by means of artificial neural network method [J]. Journal of Hydraulic Engineering, 2007,3(38):361-364.
[4] 徐国宾,韩文文,王海军. 基于SSPSO优化GRNN的水电站厂房结构振动响应预测[J]. 振动与冲击,2015, 34(4):104-109.
    XU Guobin, HAN Wenwen, WANG Haijun. Vibration response prediction of a powerhouse structure based on SSPSO-GRNN [J]. Journal of Vibration and Shock, 2015, 34(4):104-109.
[5] Yang X. Firefly algorithms for multimodal optimization [C]//Proceeding of the International Conference on Stochastic Algorithms: Foundations and Applications. Beilin: Springer-Verlag, 2009: 169-178.
[6] 龙文,蔡绍洪,焦建军,等. 求解约束优化问题的萤火虫算法及其工程应用[J]. 中南大学学报(自然科学版),2015,4(46):1260-1266.
    LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Firefly algorithm for solving constrained optimization problems and engineering applications [J]. Journal of Central South University(Science and Technology), 2015,4(46):1260-1266.
[7] 陈洁钰,姚佩阳,王勃,税冬东. 基于结构熵和IGSO-BP算法的动态威胁评估[J]. 系统工程与电子技术,2015,37(5):1076-1083。
    CHEN Jieyu, YAO Peiyang, WANG Bo, SUI Dongdong. Dynamic threat assessment based on structure entropy and IGSO-BP algorithm [J]. System Engineering and Electronics, 2015,37(5):1076-1083.
[8] Fister I, JR F, Yang X S. A comprehensive review of firefly algorithm [J]. Swarm and Evolutionary Computation, 2013,13:34-46.
[9] Yang X, Hosseini S, Gandomi A. Firefly algorithm for solving  non-convex economic dispatch problems with value loading effect[J]. Applied Soft Computing, 2012,12(3):1180-1186.
[10] Kumbharans S, Pandey M. Solving traveling salesman problem using firefly algorithm[J]. International Journal for Research in Science & Advanced Technologies,2013, 2(2):53-57.
[11] 曾冰,李明富,张翼,等. 基于萤火虫算法的装配序列规划研究[J]. 机械工程学报,2013,49(11):177-184.
    ZENG Bing, LI Mingfu, ZHANG Yi, MA Jianhua. Research on Assembly Sequence Planning Based on Firefly Algorithm [J]. Journal of Mechanical Engineering, 2013,49(11):177-184.
[12] Pal S, Rai C, Singh A. Comparative study of firefly algorithm and partical swarm optimization for noisy non-linear optimization problems [J]. International Journal of Intelligent Systems and Applications, 2012, 4(10):50-57.
[13] Nandy S, Sarka P P, Das A. Analysis of nature-inspired firefly algorithm based back-propagation neural network training [J]. Int.J. Computer Applications, 2012, 43(22):8-16.
[14] Hamzacebi C. Improving genetic algorithms’ performance by local search for continuous function optimization[J]. Applied Mathematics and Computation,2008,196(1):309-317.
[15] Wang Y, Cai Z, Zhou Y, et,al. Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handing technique [J]. Structural Multisiscipline Optinization, 2009, 37(4):395-413.
[16] Wanas N, Auda G, Kamel M S, et al. On the optimal number of hidden nodes in a neural network [C]. Proceeding of 1998 IEEE Canada Conference on Electrical and Computer Engineering, Toronto, Canada,
1998. IEEE, 2002, 918-921.

PDF(1051 KB)

Accesses

Citation

Detail

段落导航
相关文章

/