少测点条件下,利用声辐射模态理论重建声场时,测点布置方式是决定声场重建精度的一个关键因素。为求得最佳测点布置方式,提出了一种基于声辐射模态的最优测点选择方法,即基于声辐射模态矩阵的奇异值分解,采用循环迭代的方式,逐次去除对其最小奇异值最敏感的测点,从而得到了一组使重建方程条件数最小的测点。实验结果表明,利用文中提出的最优测点选择方法布置测点,能够对声场进行有效的重建,重建效果优于均匀布置方式,显著提高了声场重建精度。
Abstract
For an acoustic field reconstruction using the acoustic radiation mode theory, the distribution of measurement points is a key factor, especially, when the number of measurement points is small. In order to determine the optimal arrangement of measurement points, a method based on acoustic radiation modes was proposed. A loop iteration process was adopted in this proposed method. Singular value decomposition (SVD) of the matrix of acoustic radiation modes was employed in each loop iteration, and the measurement point that was the most sensitive to the minimum singular value was removed. Finally, those points that minimize the condition number of reconstruction equations were obtained. Furthermore, compared with the situation when measurement points distribute evenly, the test results showed that the acoustic field of sound sources can be reconstructed effectively and the precision of reconstruction is much better when measurement points distribute according to their optimal arrangement obtained with the proposed method.
关键词
声辐射模态 /
声场重建 /
测点优化
{{custom_keyword}} /
Key words
acoustic radiation modes /
acoustic field reconstruction /
optimal arrangement of measurement points
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Maynard J D, Williams E G, Lee Y. Near field Acoustic Holography I. Theory of Generalized Holography and the Development of NAH[J]. J. Acoust. Soc. Am. , 1985, 78(4): 1395-1413.
[2] WANG Zhaoxi, Wu S F. Helmholtz equation–least-squares method for reconstructing the acoustic pressure field[J]. J. Acoust. Soc. Am. , 1997, 102(4): 2020-2032.
[3] Wu S F. On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method[J]. J. Acoust. Soc. Am. , 2000, 107(5): 2511-2522.
[4] 张海滨, 万泉, 蒋伟康. HELS法在循环平稳声场全息重建中的理论与试验研究[J]. 物理学报, 2009, 58(1):333-340.
Zhang Hai-Bin, Wan Quan, Jiang Wei-Kang. Theorical and experimental research on the HELS method in the cyclo stationary acoustic field[J]. ACTA PHYSICA SINICA, 2009, 58(1):333-340.
[5] 姜哲. 声辐射问题中的模态分析:Ⅲ.声场重构[J]. 声学学报, 2005; 30(3): 242-248.
JIANG Zhe. A modal analysis for the acoustic radiation problem: III. Reconstruction of acoustic fields [J]. ACTA ACUSTICA, 2005, 30(3):242-248.
[6] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场[J]. 物理学报, 2014, 63(10):104303.
Nie Yong-Fa, Zhu Hai-Chao.Acoustic field reconstruction using source strength density acoustic radiation modes[J]. ACTA PHYSICA SINICA, 2014,63(10):104303.
[7] Borgiotti G V. The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements[J]. J. Acoust. Soc. Am. , 1990, 88(4): 1884 - 1893.
[8] K. A. Cunefare, “The design sensitivity and control of acoustic power radiated by three-dimensional structures,” Ph.D., The Pennsylvania State University, 1990.
[9] Elliott S J, Johnson M E. Radiation modes and the active control of sound power[J]. J. Acoust. Soc. Am. , 1993, 94(4): 2194-2204.
[10] Peters H, Kessissoglou N. Enforcing reciprocity in numerical analysis of acoustic radiation modes and sound power evaluation[J]. Journal of computational acoustics, 2012, 20(3): 5-33.
[11] Haijun Wu, Weikang Jiang, Yilin Zhang. A method to compute the radiated sound power based on mapped acoustic radiation modes[J]. Journal of computational acoustics, 2014, 135(2): 679-692.
[12] 杜向华,朱海潮,毛荣富, 利用声辐射模态进行声功率的灵敏度分析[J]. 振动与冲击,2011,30(11):183-185.
DU Xiang-hua, ZHU Hai-chao, MAO Rong-fu. Acoustic sensitivity analysis of sound power using sound radiation modes[J]. JOURNAL OF VIBRATION AND SHOCK, 2011, 30(11):183-185.
[13] 袁国清, 姜哲, 基于声辐射模态模型求解声功率灵敏度[J]. 振动与冲击,2009,28(8):109-112.
YUAN Guo qing, JIANG Zhe. Method for solving sound power sensitivity based on the theory of acoustic radiationmodes[J]. JOURNAL OF VIBRATION AND SHOCK, 2009, 28(8):109-112.
[14] 宋艳华, 姜哲, 测量点位置对声源识别的影响[J]. 振动与冲击,2008,27(3):35-37.
SONG Yan hua, JIANG Zhe. Effect of measurement points distribution on sound souce identification [J]. JOURNAL OF VIBRATION AND SHOCK, 2008, 27(3):35-37.
[15] D. C. Kammer. Sensor placement for on-orbit model identification and correlation of large space structures[J]. J. Guid. Control Dyn. 1991,14: 251–259.
[16] Bong-Ki Kim, Jeong-Guon Ih. On the Reconstruction of the Vibro-acoustic Field over the Surface Enclosing an Interior Space Using the Boundary Element Method[J]. J. Acoust. Soc. Am. ,1996, 100(5): 3003-3016.
[17] Zhidong Zhang, Nickolas Vlahopoulos. A computational acoustic field reconstruction process based on an indirect boundary element formulation[J]. J. Acoust. Soc. Am. 2000 108 (5):2167-2178.
[18] 雷宣扬,陈进,张桂才,陈少林. 基于Helmholtz方程最小二乘法的声场重构[J]. 上海交通大学学报,2006,40(1):129-132.
LEI Xuan-yang, CHEN Jin, ZHANG Gui-cai, CHEN Shao-lin. The Reconstruction of sound Field using Helmholtz Equation-Least Squares Method[J]. Journal of Shang Hai Jiao Tong University, 2006, 40(1):129-132.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}