在恒定转速情况下,旋转机械中滚动轴承的局部故障往往导致周期性冲击,从而产生周期性瞬态振动信号。对局部故障的瞬态特征提取一直是故障检测的关键问题。基于匹配追踪(Matching Pursuit MP)算法的稀疏分解是一种信号自适应分解算法,是强噪声背景下微弱特征提取的有效方法之一。针对滚动轴承故障振动信号稀疏表示过完备字典的选择与构造问题,基于相关滤波法优选与冲击波形匹配的Laplace小波原子构造稀疏表示中的过完备字典;针对基本匹配追踪算法计算量大、效率低的问题,结合FFT快速运算特性,通过互相关运算替换基本匹配追踪算法中的内积运算,研究基于改进MP的稀疏表示快速算法,进而提高计算效率。仿真与滚动轴承故障实验分析结果表明该算法能准确的提取滚动轴承故障特征且计算效率高。
Abstract
At constant rotating speed, localized faults of rolling bearings in rotating machines may lead to periodic impacts and thus cause periodic transient vibration signals. The transient feature extraction always is a crucial problem for localized fault detection. The sparse decomposition based on matching pursuit (MP) is an adaptive sparse representation for signals. It is one of the effective methods for weak feature extraction. Here, aiming at the selecting and constructing problems of the over complete dictionary for sparse representation of rolling bearing fault vibration signals, the matching correlation filtering method was used to construct Laplace wavelet atoms used to match the impact waveform and construct the over-complete dictionary. Aiming at the large computational cost and low efficiency problems of the basic matching tracking algorithm, combined with FFT fast operation characteristics, the correlation algorithm was used to replace the basic matching pursuit algorithm for inner product computation to improve the computational efficiency. Simulation and test analysis results of rolling bearings with faults showed that the proposed algorithm can extract their fault features accurately and efficiently.
关键词
滚动轴承 /
匹配追踪 /
字典构造 /
FFT /
特征提取
{{custom_keyword}} /
Key words
rolling bearing /
matching pursuit /
dictionary construction /
Fast Fourier Transform(FFT) /
feature extraction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] R.KLEIN, D.INGMAN, S.BRAUN .Non-stationary signals: phase-energy approach-theory and simulations [J]. Mechanical Systems and Signal Processing, 2001, 15(6):1061-1089.
[2] S. B. Wang, W. Huang, Z. Zhu. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis [J].Mechanical Systems and Signal Processing, 2011, 25(4):1299-1320.
[3] R. Yan, R. X. Gao, X. Chen. Wavelets for fault diagnosis of rotary machines: A review with applications [J]. Signal Processing, 2014, 96(A):1-15.
[4] Z.Zhu, R. Yan, L. Luo, Z. Feng, F. Kong. Detection of signal transients based on wavelet and statistics for machine fault diagnosis[J].Mechanical Systems and Signal Processing, 2009, 15(4):1076-1097.
[5] Y. Yang, D. J Yu, J.S. Cheng. A roller bearing fault diagnosis method based on EMD energy entropy and ANN [J].Journal of Sound and Vibration, 2006, 294(1-2):269-277.
[6] Z.K. Peng, P.W. Tse, F.L. Chu. An improved Hilbert–Huang transform and its application in vibration signal analysis[J].Journal of Sound and Vibration, 2005, 286(1-2):187-205.
[7] 李昌林,孔凡让,黄伟国,陈辉,王超, 袁仲洲.基于EEMD和Laplace小波的滚动轴承故障诊断[J].振动与冲击, 2014, 33(3):63-69.
LI Chang-lin, KONG Fan-rang, HUANG Wei-guo2, CHEN Hui, WANG Chao ,YUAN Zhong-zhou. Rolling bearing fault diagnosis based on EEMD and Laplace wavelet [J].Journal of Vibration and Shock, 2014, 33(3):63-69.
[8] 彭畅,柏林,谢小亮.基于EEMD、度量因子和快速峭度图的滚动轴承故障诊断方法 [J].振动与冲击, 2012, 31(20):143-146.
PENG Chang, BO Lin, XIE Xiao liang. Fault diagnosis method of rolling element bearings based on EEMD, measure-factor and fast kurtogram[J].Journal of Vibration and Shock, 2012, 31(20):143-146.
[9] MALLAT S., ZHANG Z. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.
[10] L. Cui, J. Wang, S. Lee. Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis [J]. Journal of Sound and Vibration, 2014, 333(10):2840-2862.
[11] 严宝康,周凤星.基于相干累积量分段正交匹配追踪方法的轴承早期故障稀疏特征提取[J]. 机械工程学报, 2014, 50(13):88-96.
YAN Baokang, ZHOU Fengxing. Initial Fault Identification of Bearing Based on Coherent Cumulant Stage-wise Orthogonal Matching Pursuit [J].Journal of Mechanical Engineering, 2014, 50(13):88-96.
[12]G. Cai, X. Chen, Z. He.Sparsity-enabled signal decompo- sition using tunable Q-factor wavelet transform for fault feature extraction of gearbox[J]. Mechanical Systems and Signal Processing, 2013, 41(1-2):34-53.
[13]尹忠科,邵君,Pierre, Vandergheynst. 利用FFT实现基于MP的信号稀疏分解[J].电子与信息学报,2006, 25 (4): 614-618.
Yin Zhongke, Shao Jun, Pierre Vandergheynst.MP Based Signal Sparse Decomposition with FFT[J].Journal of Electronics & Information Technology, 2006, 28(4):614-618.
[14]訾艳阳,李庆祥,何正嘉. Laplace 小波相关滤波法与冲击响应提取[J].振动工程学报, 2003, 16(1):67-70.
Zi Yanyang, Li Qingxiang. Extraction of Impulse Response Based on Correlation Filtering Method of Laplace Wavelet[J]. Journal of Vibration Engineering, 2003, 16(1):67-70.
[15]王诗彬, 朱忠奎, 王安柱.基于瞬态冲击响应参数辨识的轴承故障特征检测[J].振动工程学报, 2010, 23(4):445-449.
WANG Shibin, ZHU Zhongkui, WANG Anzhu.Bearing fault feature detection based on parameter identification of transient impulse response [J].Journal of Vibration Engineering, 2010, 23(4):445-449.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}