基于A-T模型的长杆弹超高速侵彻陶瓷靶体强度分析

翟阳修,吴 昊,方 秦

振动与冲击 ›› 2017, Vol. 36 ›› Issue (3) : 183-188.

PDF(2097 KB)
PDF(2097 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (3) : 183-188.
论文

基于A-T模型的长杆弹超高速侵彻陶瓷靶体强度分析

  • 翟阳修,吴  昊,方  秦
作者信息 +

Strength analysis of ceramic targets against hypervelocity penetration of long-rod projectiles based on A-T model

  • ZHAI Yangxiu, WU Hao, FANG Qin
Author information +
文章历史 +

摘要

Alekseevskii-Tate(A-T)模型广泛应用于长杆弹超高速冲击的终点效应分析中。A-T模型对于金属弹靶强度有明确的表达式,而对于陶瓷靶体强度尤其是弹体初始冲击速度大于1500m/s时还没有统一的结论。基于长杆钨弹超高速(1500~5000m/s)侵彻三种陶瓷(AlN,B4C,SiC)/铝复合靶体的缩比逆弹道实验数据;基于A-T模型,给出了上述陶瓷材料在不同侵彻速度范围内的靶体强度表达式。进一步通过与47发长杆钨弹超高速(1250~2500m/s)侵彻陶瓷(AlN,B4C,SiC,AD85)/RHA钢复合靶体DOP实验数据对比,验证了提出的陶瓷靶体强度表达式的适用性。

Abstract

Alekseevskii-Tate (A-T) model is widely used in the terminal ballistic analysis of long-rod projectiles hypervelocity penetrations. The explicit expressions for both strengths of metallic projectile and target in a A-T model were proposed previously. However, there was no uniform conclusion for the strength of ceramic targets in a A-T model, especially, when the initial impact velocity of projectiles was larger than 1 500 m/s. Based on reduce-scaled reverse ballistic test data of long-rod tungsten projectiles hypervelocity (1 500~5 000 m/s) penetrating into three ceramic (AlN,B4C, SiC)/aluminum composite targets, by using A-T model, the expressions of the above three ceramic targets' strengths under various projectile impact velocities were obtained. Furthermore, by comparing the above test data with the DOP tests data of 47 long-rod tungsten projectiles' hypervelocity (1 250~2 500 m/s) penetrating into ceramic (AlN,B4C, SiC, AD85)/RHA steel blocks targets, the applicability of the proposed expressions of ceramic strength were validated.

关键词

长杆弹 / 侵彻 / 陶瓷 / 强度 / Alekseevskii-Tate模型

Key words

long-rod projectile / penetration / ceramic / strength / Alekseevskii-Tate (A-T) model

引用本文

导出引用
翟阳修,吴 昊,方 秦. 基于A-T模型的长杆弹超高速侵彻陶瓷靶体强度分析[J]. 振动与冲击, 2017, 36(3): 183-188
ZHAI Yangxiu, WU Hao, FANG Qin. Strength analysis of ceramic targets against hypervelocity penetration of long-rod projectiles based on A-T model[J]. Journal of Vibration and Shock, 2017, 36(3): 183-188

参考文献

[1] Tate A. A theory for the deceleration of long rods after impact [J]. Journal of Mechanics and Physics of Solids, 1967, 15(6): 387-399.
[2] Alekseevskii V P. Penetration of a rod into a target at high velocity [J]. Combustion Explosion and Shock Waves, 1966, 2(2): 63-66.
[3] Tate A. Long rod penetration models-part II. Extensions to the hydrodynamic theory of penetration [J]. International Journal of Mechanical Sciences, 1986, 28(9): 599-612.
[4] Rosenberg Z, Tsaliah J. Applying Tate’s model for the interaction of long rod projectiles with ceramic targets [J]. International Journal of Impact Engineering, 1990, 9(2): 247-251.
[5] Sternberg J. Material properties determining the resistance of ceramics to high velocity penetration [J]. Journal of Mechanics and Physics of Solids, 1989, 65(9): 3417-3424.
[6] Forrestal M J, Longcope D B. Target strength of ceramic material for high-velocity penetration [J]. Journal of Applied Physics, 1990, 67(8): 3669-3672.
[7] Partom Y, Littlefield D L. Dependence of ceramic armor resistance on projectile velocity [C]. The 14th International Symposium on Ballistic, Quebec, 1993, 563-572.
[8] Satapathy S, Bless S. Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis [J]. Mechanics of Materials, 1996, 23(96): 323-330.
[9] 魏雪英, 俞茂宏. 钨杆弹高速侵彻陶瓷靶的理论分析 [J]. 兵工学报, 2002, 23(2): 167-170.
WEI Xue-ying, YU Mao-hong. Analysis of tungsten rods on penetrating ceramic targets at high velocity [J]. Chinese Acta Armamentarii, 2002, 23(2): 167-170.
[10] 王延斌, 李九红, 魏雪英, 等. 高速钨杆弹对脆性靶体的侵彻分析 [J]. 高压物理学报, 2005, 19(3): 257-263.
WANG Yan-bin, LI Jiu-hong, WEI Xue-ying, et al. Analysis of high-velocity tungsten rod on penetrating brittle target [J]. Chinese journal of high pressure physics, 2005, 19(3): 257-263.
[11] 李金柱, 黄风雷, 张连生. 陶瓷材料抗长杆弹侵彻阻抗研究 [J]. 北京理工大学学报, 2014, 34(1): 1-5.
LI Jin-zhu, HUANG Feng-lei, ZHANG Lian-sheng. Penetration resistance of ceramic materials subjected to projectile’s impact [J]. Transactions of Beijing Institute of Technology, 2014, 34(1):1-5.
[12] Kartuzov V V, Galanov B A, Ivanov S M. Concept of ultimate fracture velocity in the analysis of spherical cavity expansion in brittle materials: application to penetration problems [J]. International Journal of Impact Engineering, 1999, 23(1): 431-442.
[13] Satapathy S. Dynamic spherical cavity expansion in brittle ceramics [J]. International Journal of Solids and Structure, 2001, 38: 5833-5845.
[14] Orphal D L, Franzen R R, Piekutowski A J, et al. Penetration of confined aluminum nitride targets by tungsten long rods at 1.5-4.5 km/s [J]. International Journal of Impact Engineering, 1996, 18(95): 355-368.
[15] Orphal D L, Franzen R R, Charters A C, et al. Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s [J]. International Journal of Impact Engineering, 1997, 19(96): 15-29.
[16] Orphal D L, Franzen R R. Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s [J]. International Journal of Impact Engineering, 1997, 19(1): 1-13.
[17] Franzen R R, Orphal D L, Anderson C E. The influence of experimental design on Depth-Of-Penetration (DOP) test results and derived ballistic efficiencies [J]. International Journal of Impact Engineering, 1997, 19(8): 727-737.
[18] Rosenberg Z, Dekel E, Hohler V, et al. Hypervelocity penetration of tungsten alloy rods into ceramic tiles: experiment and 2-D simulations [J]. International Journal of Impact Engineering, 1997, 20: 675-683.
[19] Rosenberg Z, Dekel E, Hohler V, et al. Penetration of tungsten-alloy rods into composite ceramic targets: Experiment and 2-D simulations [C]. The tenth American Physical Society topical conference on shock compression of condensed matter. AIP Publishing, 1998, 429(1): 917-920.

PDF(2097 KB)

876

Accesses

0

Citation

Detail

段落导航
相关文章

/