盘式分布拉杆转子系统扭转振动非线性动力学特性分析

李忠刚1,2,陈照波1,朱伟东2,3,梁廷伟2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (3) : 215-221.

PDF(1251 KB)
PDF(1251 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (3) : 215-221.
论文

盘式分布拉杆转子系统扭转振动非线性动力学特性分析

  • 李忠刚1,2,陈照波1,朱伟东2,3,梁廷伟2
作者信息 +

Nonlinear dynamic characteristics analysis for torsional vibration of a distributed disk-rod-fastening rotor system#br#

  • LI Zhonggang1,2,CHEN Zhaobo1,ZHU Weidong2,3,LIANG Tingwei2
Author information +
文章历史 +

摘要

随着燃气轮机技术的发展,盘式分布拉杆转子系统在燃气轮机等动力机械中得到广泛应用。本文主要研究盘式分布拉杆转子扭转振动的非线性动力学特性,通过考虑叶盘接触效应和拉杆等效简化,建立一个新的系统扭转振动方程。利用多尺度方法求解动力学方程解析解,并获得拉杆转子系统扭转振动幅频方程和解析曲线,根据奇异性理论获得系统转迁集,并利用动力学系统的扰动方程零解稳定性研究原系统的周期解的稳定特性,并发现系统动力学参数对其影响规律,并根据新模型建立实际结构参数与非线性动力学参数的联系,给出系统稳定性边界条件。本文的分析结果对燃气轮机转子系统动力学设计具有一定的指导意义。

Abstract

Distributed disk-rod-fastening rotor systems are widely used in power machineries with the development of gas turbine technology. Here, the nonlinear dynamic characteristics of the torsional vibration of the rotor system considering influence of blade-disk contact effects were studied. The torsional vibration equation for the distributed disk-rod-fastening rotor system was established. With the method of equivalent and simplifying. Using the multi-scale method, the analytical solutions to the dynamic equation were obtained, and the rotor's amplitude-frequency equation and the analytical curves of the rotor system were figured out. Based on the singular theory, the transition set of the system were obtained. With the zero solution of the perturbation equation of the rotor dynamic system, the stability characteristics of periodic solutions of the rotor system versus the dynamic paramic parameters of the system were investigated. According to the dynamic model of the system, the relationships between the actual structural parameters and the nonlinear dynamic parameters of the system were built, the stability boundary conditions of the system were derived. The results provided a guidance for designing the rotor system of gas turbine machineries.

关键词

非线性转子动力学 / 扭转振动 / 多尺度法 / 盘式分布拉杆转子 / 稳定性分析

Key words

nonlinear rotor-dynamics / torsional vibration / multi-scale method / distributed disk-rod-fastening rotor / stability analysis

引用本文

导出引用
李忠刚1,2,陈照波1,朱伟东2,3,梁廷伟2. 盘式分布拉杆转子系统扭转振动非线性动力学特性分析[J]. 振动与冲击, 2017, 36(3): 215-221
LI Zhonggang1,2,CHEN Zhaobo1,ZHU Weidong2,3,LIANG Tingwei2. Nonlinear dynamic characteristics analysis for torsional vibration of a distributed disk-rod-fastening rotor system#br#[J]. Journal of Vibration and Shock, 2017, 36(3): 215-221

参考文献

[1] 何鹏, 刘占生, 张广辉等. 分布拉杆转子动力学建模与分析[J]. 汽轮机技术, 2010, 52 (1): 4-8.
HE Peng, LIU Zhan-sheng, ZHANG Guang-hui, et al. Dynamic modeling and analysis of distributed rod fastening rotor[J]. Turbine Technology, 2010, 52(1):4-8.
[2] 汪光明, 饶柱石, 夏松波. 拉杆转子力学模型的研究[J]. 航空学报, 1993, 14(8): 419-423.
WANG Guang-ming, RAO Zhu-shi, XIA Song-bo. The analysis of mechanical model of rod fastening rotor[J].Acta Aeronautica et Astronautica Sinica,1993,14(8): 419-423.
[3] Kim, Y C and Kim, K W. Influence of lamination pressure upon the stiffness of laminated rotor[J]. JSME, 2006, 49(2): 426-431.
[4] 章圣聪, 王艾伦. 盘式拉杆转子振动特性研究[J]. 振动与冲击, 2009, 28(4): 117-120.
ZHANG Sheng-cong, WANG Ai-lun. Analysis of vibration characteristics of a disk-rod-fastening rotor[J]. Journal of Vibration and Shock, 2009, 28(4): 117-120.
[5] 王艾伦, 骆舟. 拉杆转子扭转振动研究[J]. 振动与冲击, 2009, 28(5): 165-168.
WANG Ai-lun, LUO Zhou. Study on rod fastening rotor’s torsional vibration[J]. Journal of Vibration and Shock, 2009, 28(5): 165-168.
[6] 李辉光, 刘恒, 虞烈. 考虑接触刚度的燃气轮机拉杆转子动力特性研究[J]. 振动与冲击. 2012 ,31(07):4-8.
LI Hui-guang, LIU Heng, YU Lie. Dynamic characteristics of a rod fastening rotor for gas turbine considering contact stiffness[J]. Journal of Vibration and Shock, 2012,31(12): 4-8
 Nonlinear dynamic behaviors and stability of circumferential rod fastening rotor system[J]. Journal of Mechanical Engineering, 2011, 47(23): 82-91.
[7] 高进, 袁奇, 李浦等. 燃气轮机拉杆转子考虑接触效应的扭转振动模态分析[J]. 振动与冲击, 2012, 31(12):9-18.
GAO Jin, YUAN Qi, LI Pu, et al. Torsional vibration modal analysis for a rod-fastened gas turbine considering contact effects[J]. Journal of Vibration and Shock, 2012(12): 9-13.
[8] 刘恒, 陈丽. 周向均匀分布拉杆柔性组合转子轴承系统的非线性动力学特性[J]. 机械工程学报, 2010, 46(19): 53-62.
LIU Heng, CHEN Li. Nonlinear dynamic analysis of a flexible rod fastening rotor bearing system[J].Journal of Mechanical  Engineering, 2010, 46(19): 53-62.
[9] YI Jun, LIU Heng, LIU Yi, et al. Global nonlinear dynamic characteristics of rod-fastening rotor supported by ball bearings[J]. P I MECH ENG K-J MUL, 2015, 229(2):208-222.
[10] HEI Di, LU Yan-jun, ZHANG Yong-fang, et al. Nonlinear dynamic behaviors of a rod fastening rotor supported by fixed-tilting pad journal bearings[J]. Chaos, Solitons & Fractals, 2014, 69: 129-150.
[11] HEI Di, LU Yan-jun, ZHANG Yong-fang, et al. Nonlinear dynamic behaviors of rod fastening rotor-hydrodynamic journal bearing system[J]. Arch Appl Mech, 2015, 85(7): 855-875.
[12] Buskirk E. Torsional Dynamics Large 2-pole and 4-pole Steam Turbine Powertrains [J]. GE Power & Water, 2013(05): Ger-4724.
[13] Menq C H, Bielak J, Griffin J H. The influence of microslip on vibratory response, part I: A new microslip model[J]. Journal of Sound and Vibration, 1986, 107: 279-293.
[14] Bouchaala N, Peyret N, Tawfiq I. Micro-slip induced damping in the contact of nominally flat surfaces[J]. International Journal Applied Mechanics, 2013, 5(1): 1350005.
[15] 陈予恕. 非线性振动系统的分岔与混沌理论[M]. 北京:高等教育出版社, 1993.
CHEN Yu-shu. Bifurcation and chaos theory of nonlinear vibration systems[M]. Beijing: Higher education press, 1993.

PDF(1251 KB)

704

Accesses

0

Citation

Detail

段落导航
相关文章

/