基于拉伸振动精确化理论求解含孔厚板弹性波散射问题

周传平1 胡 超2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (3) : 222-226.

PDF(1229 KB)
PDF(1229 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (3) : 222-226.
论文

基于拉伸振动精确化理论求解含孔厚板弹性波散射问题

  • 周传平1   胡 超2
作者信息 +

Elastic wave scattering in thick plates with a hole based on thick plates longitudinal vibration equation#br#

  • ZHOU Chuanping1,HU Chao2
Author information +
文章历史 +

摘要

针对采用弹性力学平面问题求解波动/振动时常产生较大误差的问题,基于厚板拉伸振动精确化方程,采用复变函数方法对含孔平板中弹性波散射与动应力集中问题进行了研究。利用正交函数展开的方法将待解的问题归结为对一组无穷代数方程组的求解。给出了含椭圆孔厚板拉压弹性波散射与动应力集中的数值结果。研究结果表明:动应力集中系数与分布取决于入射波数、平板厚度、椭圆偏心率等无量纲化参数。

Abstract

Based on longitudinal vibration equation of thick plates, using the complex functions and mapping method, elastic wave scattering and dynamic stress concentrations in thick plates with a hole were studied. Applying the orthogonal function expansion method, the problem to be solved was converted into solving a set of infinite algebraic equations. As an example, the numerical results for tension-compression elastic wave scattering and dynamic stress concentration factors in thick plates with an elliptic hole were computed. The results indicated that some parameters, such as, incident wave number, thickness of plates and elliptic eccentricity ratio have great effects on dynamic stress distributions and dynamic stress concentratuion factors of thick plates with a hole.

关键词

平板拉伸振动精确化方程 / 厚壁动力学 / 弹性波散射与动应力集中 / 复变函数法 / 剪应力一阶矩

Key words

longitudinal vibration equation of thick plates / dynamics of thick walled structures / elastic wave scattering and dynamic stress concentrations / complex functions method / first moment of shear stresses

引用本文

导出引用
周传平1 胡 超2. 基于拉伸振动精确化理论求解含孔厚板弹性波散射问题[J]. 振动与冲击, 2017, 36(3): 222-226
ZHOU Chuanping1,HU Chao2 . Elastic wave scattering in thick plates with a hole based on thick plates longitudinal vibration equation#br#[J]. Journal of Vibration and Shock, 2017, 36(3): 222-226

参考文献

[1] Savin G. N.著, 卢鼎霍译. 孔附近的应力集中[M]. 北京: 科学出版社, 1965. (Savin E H. Stress Concentrations at the Edge of a Hole[M]. Lu Ding huo trans. Beijing: Science Press, 1965.(Chinese version))
[2] Eringen A C, Suhubi E S. Elastodynamics,Volume II Linear Theory[M]. New York, San Francisco, London: Academic Press, 1975.
[3] Liu DK, Hu C. Scattering of flexural wave and dynamic stress concentration in Mindlin thick plates[J]. Acta Mechanica Sinica, 1996, 12(2): 169–185.
[4] Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates[J]. ASME Journal of Applied Mechanics, 1951, 18: 31–36.
[5] Pao Y. H., Mow C. C. Diffraction of Elastic Waves and Dynamic Stress Concentrations[M]. New York: Crane and Russak, 1973. 230-231.
[6] 胡超, Fai Ma, 马兴瑞等. 平板弯曲自由振动的精确化动力学方程及其分析[J]. 中国科学, G辑, 物理、力学、天文学, 2011, 41(6):781-790. (Hu C, Ma F, Ma X R, et al. Refined dynamic equations of the plate bending without any assumptions. Sci Sin Phys Mech Astron, 2011, 41(6):781–790. (in Chinese))
[7] 胡超, Fai Ma, 马兴瑞等. 厚板弯曲与拉伸振动精化理论及其求解新途径[J]. 中国科学, G辑, 物理、力学、天文学, 2012, 42(5):522-530. (Hu C, Ma F, Ma X R, et al. Refined dynamic theory of thick plates in extension-bending and its new formulism. Sci Sin-Phys Mech Astron, 2012, 42(5): 522–530. (in Chinese))
[8] Saada A. S. Elasticity Theory and Applications[M]. Fort Lauderdale: J. Ross Pub, 2009.
[9] Muskhelishvili N. I. Certain Fundamental Problems of the Mathematical Theory of Elasticity[M]. Moscow: Izd-vo Nauka, 1966.
[10] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. Dover publications, 1964.

PDF(1229 KB)

Accesses

Citation

Detail

段落导航
相关文章

/