信号的幅值突变往往蕴含着设备的故障信息,为明确产生幅值突变的时频区域,基于听觉系统的信息处理机制,提出了一种信号显著图计算方法。首先,对信号进行带通滤波、相位调整、半波整流等听觉外周处理,然后,提取处理结果的一次或多次包络信息,并对包络信息进行多尺度二维滤波。继而,利用中心-周边差算子得到信号在不同尺度下的局部显著度,最后,对局部显著度进行跨尺度整合和线性合并得到信号的时频显著图和全局显著图。仿真和实验结果表明,该方法适用于振动信号和语音信号,可以清晰表征幅值突变的时频区域,并可抵抗一定的噪声干扰,具有一定的有效性和实用性。
Abstract
A signal amplitude saltation often implies fault information of an equipment. In order to recognize the time-frequency domain where a signal amplitude saltation appears, a calculation method of signal saliency map based on the information processing mechanism of an auditory system was proposed. Firstly, auditory peripheral processings, such as, band-pass filtering, phase adjustment and half wave rectification were performed for a signal. Secondly, extracting the envelope information from the results of processings one time or multiple times, they were then processed with the multi-scaled two dimensional filtering. Nextly, the local saliency of the signal under different scales was obtained using the centre-rim difference operator. Finally, the global saliency map and time-frequency saliency map of the signal were gained by means of the multi-scaled integration and the linear combination of local saliencies. The results of tests and simulations showed that the proposed method is applicable to both vibration signals and voice signals, it is effective and practical, it can clearly represent amplitude saltation time-frequency domain of a signal and resist a certain noise interference.
关键词
听觉模型 /
显著图 /
故障诊断 /
二维滤波 /
包络分析
{{custom_keyword}} /
Key words
auditory model /
saliency map /
fault diagnosis /
two-dimensional filtering /
envelope analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 夏虹,陈志辉,邓礼平等. 基于小波的突变信号识别方法与应用研究[J]. 原子能科学技术,2012, 46(12) : 1451-1456. XIA Hong , CHEN Zhi-hui , DENG Li-ping , et al .Mutation Signal Recognition Method Based on Wavelet and Application [J]. Atomic Energy Science and Technology , 2012, 46(12): 1451-1456.
[2] 张欣,夏秀渝,王雪君等. 一种听觉显著图提取模型[J].四川大学学报(自然科学报),2014,51(2): 292-298.
ZHANG Xin, XIA Xiu-yu, WANG Xue-jun ,et al. A saliency map extraction model for auditory attention[J]. Journal of Sichuan Univeisity ( Natural Science Edition ) , 2013, 29(9): 1142-1147.
[3] 王雪君,夏秀渝,张欣等. 新的听觉注意显著图计算模型研究[J]. 信号处理,2013, 29(9): 1142-1147.
WANG Xue-jun, XIA Xiu-yu, ZHANG Xin ,et al. Research on a novel saliency map computational model of auditory attention [J]. Journal of SignalI Processing 2013, 29(9): 1142-1147.
[4] 吴 燕,隋光远,曹晓华. 内源性注意和外源性注意的ERP研究[J].心理科学进展,2007, 15(1): 71-77.
WU Yan , SUI Guang-yuan , CAO Xiao-hua . ERP Studies of Endogenous and Exogenous Attention[J]. Advances in Psychological Science, 2007, 15(1): 71-77.
[5] 李允公,张金萍,戴丽等. 基于听觉模型ZCPA的故障诊断特征提取方法研究[J].中国机械工程,2009,20(24): 2988-2992.
LI Yun-gong , ZHANG Jin-ping , DAI Li , et al . Study on the ZCPA-auditory-model-based Method of Feature Extraction for Mechanical Faults Diagnosis [J] . Chinese Journal of Mechanical Engineering, 2009, 20(24): 2988-2992.
[6] Shamma S.On the role of space and time in auditory processing[J].Trends in Cognitive Science,2001,5: 340-348.
[7] 陈世雄, 宫琴, 金慧君. 用Gammatone滤波器组仿真人耳基底膜的特性[J] . 清华大学学报(自然科学版) , 2008 , 46(6): 33-38.
CHEN Shi-xiong , GONG Qin , JIN Hui-jun , Gammatone filter bank to simulate the characteristics of the human basilar membrane [J]. J Tsingh ua Univ ( Sci & Tech ),2008 , 46(6): 33-38.
[8] Liu H Y , Huang W G , Wang S B , et al . Adaptive spectral kurtosis filter based on Morlet wavelet and its application for signal transients detection [J]. Signal Processing , 2007,21(6): 2616-2633.
[9] 赵鹤鸣,王永琦,陈雪勤.听觉模型反演方法及其应用[J].声学学报,2005, 30(6): 530-535.
ZHAO He-ming , WANG Yong-qi , CHEN Xue-qin . Auditory model inversion and its application [J] . Acta Acustica, 2005, 30(6):530-535.
[10] 李智,陈祥初,刘政波. 包络分析及其在设备故障诊断中的应用[J].测试技术学报,2006, 12(6): 92-95.
LI Zhi, CHEN Xia-chu, LIU Zheng-bo. Envelopment Analysis and Its Application in the Fault Diagnosis[J]. Journal of Test and Measurement Technology , 2006 , 12(6): 92-95.
[11] 冯新星,张丽艳,叶南等.二维高斯分布光斑中心快速提取算法研究[J]. 光学学报,2012,32(5).
FENG Xin-xing , ZHANG Li-yan , YE Nan , et al. Fast Aigorithms on Center Location of Two Dimensional Gaussian Distribution Spot [J] . Acta Optica Sinica, 2012, 32(5).
[12] 刘扬,张苗辉,郑逢斌.听觉选择性注意的认知神经机制与显著性计算模型[J]. 计算机科学, 2013, 40(6): 283-287.
LIU Yang, ZHANG Miao-hui, ZHENG Feng-bin. Cognitive Neural Mechanisma and Saliency Computational Model of Auditory Selective Attention [J]. Compututer Science, 2013,40(6):283-287.
[13] Itti L and Koch C.Computational modelling of visual attention[J]. Nature Reviews Neuroscience,2001,2(3): 194-203.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}