冗余驱动振动台台阵系统误差不仅会造成单个振动台内力,也会使振动台之间产生台阵内力,这会减小系统的净出力,甚至损坏试件。本文首先应用冗余驱动并联机构动力学原理,分析冗余驱动振动台台阵系统内力的形成机理;建立台阵系统的内力耦合模型,推导系统的机械安装误差、位移测量误差和伺服阀零偏三种主要误差因素与振动台内力和台阵内力的数学关系式,进而定量地分析上述误差对系统内力的影响机理。然后结合动力学关系得到振动台的内力合成矩阵和自由度广义力合成矩阵,并根据系统内力的形成机理和影响机理,分别设计了比例-积分控制器对振动台内力和台阵内力进行抑制。最后,利用SimMechanics软件建立冗余振动台台阵系统动力学模型,结合Simulink软件建立其控制系统模型并进行联合仿真验证。仿真结果表明: 本文对台阵系统内力影响机理分析正确和提出的内力抑制方法能够有效地消除系统内力。
Abstract
The table array system errors of redundantly-driven electro-hydraulic shaking tables not only lead to inner coupling force in each shaking table, but also lead to inner coupling forces between shaking tables. The inner coupling forces can reduce the net output force of the system and even may damage specimens. Here, the redundantly driven parallel mechanism dynamics was used to analyze the formation mechanism of the inner coupling force and establish the model of the inner coupling force. The mathematical relationship equations for inner coupling forces in a shaking table and those between shaking tables versus installation errors, displacement measurement errors and servo valve zero-bias of the system were derived. The influence mechanism of the errors mentioned above on the inner coupling forces was analyzed quantitatively. The inner coupling force synthesis matrix and the generalized forces of all DOFs. synthesis matrix were derived applying the dynamics relations and then the inner coupling force suppression controllers based on proportional-integral controllers were respectively designed according to the influence mechanism and the formation mechanism of the inner coupling forces. The dynamic model of a shaking table array system was built using the software SimMechanics and its control model was built using Simulink. The co-simulations were performed and the simulation results indicated that the analysis of the shaking table array systems inner coupling forces is right and the proposed control strategies can reduce the inner coupling forces effectively.
关键词
冗余驱动 /
振动台台阵 /
振动台内力 /
台阵内力 /
内力抑制
{{custom_keyword}} /
Key words
redundantly-driven /
shaking table array /
inner coupling force in shaking table /
inner coupling force between shaking tables /
inner coupling force suppression
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Shen Gang, Zheng Shutao, Cong Dacheng, Han Junwei. Adaptive inverse control of time waveform replication for electro-hydraulic shaking table[J]. Journal of Vibration and Control, 2010(11):1611-1633.
[2] R.T.Severn. The development of shaking tables-a historical note[J]. Earthquake Engineering & Structural Dynamics, 2011, 41(2):195~213.
[3] Underwood, M. A. Multi-exciter Testing Applications: Theory and Practice, Institute of Environmental Sciences and Technology, April 2002.
[4] Filiatrault A, Wanitkorkul A, and Higgins, P. Experimental Stiffness and Seismic Response of Pallet-Type Steel Storage Rack Connectors[J]. Practice Periodical on Structural Design and Construction, 2006:161-170.
[5] 张 超, 许 莉, 房贞政. 三塔长跨斜拉桥振动台试验研究[J]. 地震工程与工程振动, 2013:126-132.
Zhang Chao,Xu Li,Fang Zhenzheng. Research on the shaking table test of long-span cable- stayed bridge with three towers [J]. Journal of earthquake engineering and engineering vibration, 2013:126-132.
[6] 纪金豹, 李芳芳, 李振宝, 孙丽娟. 地震模拟振动台台阵控制技术的研究与发展[J]. 结构工程师, 2012:96-101.
Ji jinbao, Li fangfang, Sun lijuan. Research and Advances on the Control Technology of the Multiple Shaking Table Array System[J]. Structural Engineers, 2012:96-101.
[7] Ceresa P, Brezzi F, Calvi G M, et al. Analytical modeling of a large-scale dynamic testing facility[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(2):255-277.
[8] 宗周红, 陈 亮, 黄 云. 地震模拟振动台台阵试验技术研究与应用[J]. 结构工程师, 2011:6-14
Zong Zhouhong, Chen Liang, Huang Yun. Research and application of testing technology of the earthquake simulation multiple shaking table facilities[J]. Structural Engineers, 2011:6-14.
[9] Cui ze, Wang xiangcan, Qian donghai, Gong zhenbang.Research on simulation of redundant robot force control[J]International Conference on Robotics and Biomimetics,
2007:1669-1674.
[10] Krzysztof E Jankowski, Hoda A. E1Maraghy. Robust hybrid position/force control of redundant robots. Robotics and Autonomous Systems, 1999 (27) 111-127.
[11] Kuijing Zheng and Chao Wang. Force/Position Hybrid Control of 6PUS-UPU Redundant Driven Parallel Manipulator Based on 2-DOF Internal Model Control[J]. Journal of Control Science and Engineering, 2014:1-6.
[12] Lijian WANG, Jean-Charles MARE, Yongling FU, Haitao Qi. Force equalization for redundant active position control system involving dissimilar technology actuators[J]. Proceedings of the 8th JFPS International Symposium on Fluid Power, 2011:136-143.
[13] Andrew Plummer. A general co-ordinate transformation framework for multi-axis motion control with application in the testing industry[J]. Control Engineering Practice, 2010, 18(6): 598~607.
[14] 关广丰, 熊 伟, 韩俊伟. 6自由度液压振动台控制策略研究[J]. 振动与冲击. 2010(29):200-203.
Guan Guangfeng, Xiong Wei, Han Junwei. Control strategy of a 6-DOF hydraulic shaker[J]. Journal of vibration and shock, 2010(29):200-203.
[15] 何景峰,李宝平,佟志忠. 液压驱动冗余振动台自由度控制及内力协调[J]. 振动与冲击. 2011,30(3): 74-78.
He Jingfeng, Li Baoping, Tong Zhizhong. DOF control and inner coupling force balancing of hydraulically redundant actuated shaking table[J]. Journal of Vibration and Shock.2011,30(3):74-78.
[16] 魏巍,杨志东,曲志勇,韩俊伟. 超冗余多轴振动台的内力耦合控制[J]. 吉林大学学报,2014.
Wei Wei, Yang Zhidong, Qu Zhiyong, Han Junwei. Internal force coupling control for hyper-redundant multi-axis hydraulic shaking table[J]. Journal of Jilin University, 2014.
[17] Li Hongren. Hydraulic control system[M]. National Defense Industry Press,1990.
[18] 邓 飚, 苏文斌, 张 安. 双缸电液位置伺服同步控制系统的智能控制[J]. 西安交通大学学报, 2011(45):85-90.
Deng biao, Su wenbin, Zhang an. Intelligent control of electro-hydraulic position servo synchronic control system with double cylinders[J]. Journal of Xi'an Jiaotong University, 2011(45):85-90.
[19] SimMechanicsTM 3 Getting Started Guide[M]. The MathWorks, Inc. 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}