振子及其耦合条件对圆窗激励式人工中耳性能影响的数值研究

徐丹1,刘后广1,田佳彬2,饶柱石2,程刚1,杨建华1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 12-20.

PDF(1908 KB)
PDF(1908 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 12-20.
论文

振子及其耦合条件对圆窗激励式人工中耳性能影响的数值研究

  • 徐丹1,刘后广1,田佳彬2,饶柱石2,程刚1,杨建华1
作者信息 +

The effect of an actuator and its coupling conditions on round window-stimulated middle ear implants: a numerical analysis

  • XU Dan1, LIU Houguang1, TIAN Jiabin2, RAO Zhushi2, CHENG Gang1, YANG Jianhua1
Author information +
文章历史 +

摘要

为研究振子及其耦合条件对圆窗激励式人工中耳植入性能的影响,建立了包括振子和隔膜在内的人耳有限元模型。该模型基于一无任何听力损伤病史的成年志愿者右耳,采用CT扫描和逆向成型技术建立而成,通过与相关文献的实验数据比对验证了模型的可靠性。基于该模型,分析了圆窗上的初始预压力、振子和隔膜的设计参数变化对振子听力性能的影响。结果表明:振子横截面积越大,其对耳蜗的激励效果越差;隔膜的引入有利于提高振子的激振性能,在文中研究范围内,较小的隔膜杨氏模量和厚度有利于提升振子的激振性能;振子质量的增加会恶化振子在高频段的植入性能;在圆窗上施加的初始预压力能够提高中高频段上对耳蜗的激振效果。

Abstract

Consisting of the actuator and a coupling layer, a finite element (FE) model of the human ear was used to analyze the effect of the actuator and its coupling conditions on the performance of round window-stimulated (RW-S) middle ear implants (MEIs). The model, based on the right ear of a healthy adult, was built via micro-computer tomography imaging and the technique of reverse engineering. The validity of the model was verified by comparing the model simulated results with experimental data. The influence of the constant pretension of the round window, two main design parameters of the actuator and two aspects of the coupling layer were investigated by the FE model. The results show that: the larger cross-section of the actuator, the worse effect on the implant performance of the RW-S MEI; the introduction of coupling layer between the actuator and RW could effectively improve the implant performance of RW stimulation; however, the degree of this improvement would be reduced with the increase of the thickness and the Young’s modulus of the coupling layer in the research scope; the actuator’s stimulated performance at high frequencies will be deteriorated with the increase of the actuator’s mass; the constant pretension applied to the round window is beneficial for sound transmission to the cochlear at middle-high frequency range.

关键词

人工中耳 / 圆窗 / 振子 / 隔膜 / 有限元分析

Key words

middle ear implants / round window / actuator / coupling layer / finite element analysis

引用本文

导出引用
徐丹1,刘后广1,田佳彬2,饶柱石2,程刚1,杨建华1. 振子及其耦合条件对圆窗激励式人工中耳性能影响的数值研究[J]. 振动与冲击, 2017, 36(4): 12-20
XU Dan1, LIU Houguang1, TIAN Jiabin2, RAO Zhushi2, CHENG Gang1, YANG Jianhua1. The effect of an actuator and its coupling conditions on round window-stimulated middle ear implants: a numerical analysis[J]. Journal of Vibration and Shock, 2017, 36(4): 12-20

参考文献

[1] Meister H, Lausberg I, Kiessling J, et al. Determining the importance of fundamental hearing aid attributes [J]. Otology & Neurotology, 2002, 23(4): 457-462.
[2] Kim MK, Yoon YH, Park IY, et al. Design of differential electromagnetic transducer for implantable middle ear hearing device using finite element method [J]. Sensors and Actuators a-Physical, 2006, 130(SI):234-240.
[3] Horlbeck D. Fully implantable ossicular stimulator [J]. Operative Techniques in Otolaryngology-Head and Neck Surgery, 2010, 21(3): 207-210.
[4] Gan RZ, Dai C, Wang X, et al. A totally implantable hearing system–Design and function characterization in 3D computational model and temporal bones [J]. Hearing Research, 2010, 263(1): 138-144.
[5] Ball GR. The vibrant soundbridge: design and development [J]. Advances in Oto-Rhino-Laryngology, 2010, 69:1-13.
[6] Liu HG, Ta N, Ming XF, et al. Design of floating mass type piezoelectric actuator for implantable middle ear hearing devices [J]. Chinese Journal of Mechanical Engineering, 2009, 22(2): 221-226.
[7] 刘后广, 塔娜, 饶柱石. 新型人工中耳压电振子设计 [J]. 振动与冲击, 2011, 30(7): 112-115.
LIU Hou-guang, TA Na, RAO Zhu-shi. Design of a new type of piezoelectric actuator for middle ear implant [J]. Journal of Vibration and Shock, 2011, 30(7): 112-115.
[8] Tringali S, Pergola N, Berger P, et al. Fully implantable hearing device with transducer on the round window as a treatment of mixed hearing loss [J]. Auris Nasus Larynx, 2009, 36(3): 353-358.
[9] Goll E, Dalhoff E, Gummer AW, et al. Concept and evaluation of an endaurally insertable middle-ear implant [J]. Medical Engineering & Physics, 2013, 35(4): 532-536.
[10] Kaltenbacher D, Schachtele J, Goll E, et al. Design study of a miniaturized displacement transducer (MDT) for an active middle ear implant system [J]. Biomedical Microdevices, 2014, 16(6): 805-814.
[11] Hamanishi S, Koike T, Matsuki H, et al. A new electromagnetic hearing aid using lightweight coils to vibrate the ossicles [J]. Ieee Transactions on Magnetics, 2004, 40(5): 3387-3393.
[12] Song YL, Jian JT, Chen WZ, et al. The development of a non-surgical direct drive hearing device with a wireless actuator coupled to the tympanic membrane [J]. Applied Acoustics, 2013, 74(12): 1511-1518.
[13] Perkins R, Fay JP, Rucker P, et al. The EarLens system: New sound transduction methods [J]. Hearing Research, 2010, 263(1-2): 104-113.
[14] Nakajima HH, Merchant SN, Rosowski JJ. Performance considerations of prosthetic actuators for round-window stimulation [J]. Hearing Research, 2009, 263(1-2): 114-119.
[15] Sprinzl GM, Wolf-Magele A, Schnabl J, et al. The active middle ear implant for the rehabilitation of sensorineural, mixed and conductive hearing losses [J]. Laryngo-Rhino-Otologie, 2011, 90(9): 560-569.
[16] Beltrame AM, Martini AS, Giarbini N, et al. Coupling the Vibrant Soundbridge to cochlea round window: auditory results in patients with mixed hearing loss [J]. Otology & Neurotology, 2009, 30(2): 194-201.
[17] Maier H, Salcher R, Schwab B, et al. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator [J]. Hearing Research, 2013, 301(7): 115-124.
[18] Salcher R, Schwab B, Lenarz T, et al. Round window stimulation with the floating mass transducer at constant pretension [J]. Hearing Research, 2014, 314(8): 1-9.
[19] Koka K, Holland NJ, Lupo JE, et al. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis [J]. Hearing Research, 2009, 263(1-2): 128-137.
[20] Gostian AO, Pazen D, Ortmann M, et al. Impact of coupling techniques of an active middle ear device to the round window membrane for the backward stimulation of the cochlea [J]. Otology & Neurotology, 2015, 36(1): 111-117.
[21] 刘迎曦, 李生, 孙秀珍. 人耳传声数值模型 [J]. 力学学报, 2008, 40(1): 107-113.
LIU Ying-xi, LI Sheng, SUN Xiu-zhen. Numerical modeling of human ear for sound transmission [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 107-113.
[22] 王学林, 周健军, 凌玲, 等. 含主动耳蜗的人耳传声有限元模拟 [J]. 振动与冲击, 2012, 31(21): 41-45.
WANG Xue-lin,ZHOU Jian-jun,LING Ling, et al. FE simulation of sound transmission in human ear with an active cochlea model [J]. Journal of Vibration and Shock, 2012, 31(21): 41-45.
[23] 姚文娟, 崔存玉, 陈懿强. 高压对耳蜗的影响 [J]. 医用生物力学, 2016, 31(1):40-49.
YAO Wen-juan;CUI Cun-yu;CHEN Yi-qiang, et al. Effects of high pressure on the cochlea  [J]. Journal of Medical Biomechanics, 2016, 31(1):40-49.
[24] 朱翊洲, 陈力奋, 张天宇, 等. 中耳有限元分析中内耳淋巴液作用的等效模型研究 [J]. 振动与冲击, 2010, 29(7): 79-82.
ZHU Yi-zhou,CHEN Li-fen,ZHANG Tian-yu, et al. Equivalent model of cochlear lymphfluid in middle ear finite element analysis [J]. Journal of Vibration and Shock, 2010, 29(7): 79-82.
[25] Fei Z, Koike T, Jie W, et al. Finite element analysis of the middle ear transfer functions and related pathologies [J]. Medical Engineering & Physics, 2009, 31(31): 907-916.
[26] 王学林, 胡于进. 蜗窗激励评价的有限元计算模型研究 [J]. 力学学报, 2012, 44(3): 622-630.
WANG Xue-lin, HU Yu-jin. Evaluation of round window stimulation by a FE model of human auditory periphery [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 622-630.
[27] 刘后广, 塔娜, 饶柱石. 悬浮振子对中耳声传播特性影响的数值研究 [J]. 力学学报, 2010, 42(1): 109-114.
LIU Hou-guang, TA Na, RAO Zhu-shi. Numerical study of the effect of the floating mass transducer on middle ear sound transmission [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 109-114.
[28] 田佳彬, 饶柱石, 塔娜, 等. 人工中耳悬浮式压电振子的优化设计[J].振动与冲击, 2015, 34(5):135-140.
TIAN Jia-bin, RAO Zhu-shi, TA Na, et al. Optimal design of a floating mass type piezoelectric actuator for implantable middle ear hearing devices [J]. Journal of Vibration and Shock, 2015, 34(5):135-140.
[29] Zhang XM, Gan RZ. A comprehensive model of human ear for analysis of implantable hearing devices [J]. Ieee Transactions on Bio-Medical Engineering, 2011, 58(10): 3024-3027.
[30] Tian JB, Huang XS, Rao ZS, et al. Finite element analysis of
the effect of actuator coupling conditions on round window stimulation [J]. Journal of Mechanics in Medicine and Biology, 2015, 15(4).
[31] Francesca A, Maurizio B, Helge RA. Is the human round window really round? An anatomic study with surgical implications [J]. Otology & Neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 2014, 35(8): 1354-1360.
[32] Zwislocki J. Analysis of the middle‐war function. Part I: Input impedance [J]. Journal of the Acoustical Society of America, 1962, 34(9B): 1514-1523.
[33] Gentil F, Parente M, Martins P, et al. The influence of the mechanical behaviour of the middle ear ligaments: A finite element analysis [J]. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 2011, 225(H1): 68-76.
[34] Gan RZ, Sun QL, Feng B, et al. Acoustic-structural coupled finite element analysis for sound transmission in human ear - Pressure distributions [J]. Medical Engineering & Physics, 2006, 28(5): 395-404.
[35] Volandri G, Di Puccio F, Forte P, et al. Biomechanics of the tympanic membrane [J]. Journal of Biomechanics, 2011, 44(7): 1219-1236.
[36] Aibara R, Welsh JT, Puria S, et al. Human middle-ear sound transfer function and cochlear input impedance [J]. Hearing Research, 2001, 152(1-2): 100-109.
[37] Gan TZ, Wood TW, Dormer TJ. Human middle ear transfer function measured by double laser interferometry system [J]. Otology & Neurotology, 2004, 25(4): 423-435.
[38] Békésy GV, Wever EG, Peake WT. Experiments in Hearing [J]. Journal Of the Acoustical Society of America, 1960, 88(88): 324–325.
[39] Kringlebotn M, Gundersen T, Krokstad A, et al. Noise-induced hearing losses. Can they be explained by basilar membrane movement? [J]. Acta Oto-laryngologica Supplementum, 1979, 360:98-101.
[40] Gundersen T, Skarstein O, Sikkeland T. A Study of the Vibration of the Basilar Membrane in Human Temporal Bone Preparations by the Use of the Mossbauer Effect [J]. Acta Oto-Laryngologica, 2009, 86(3-4): 225-232.
[41] Nakajima HH, Dong W, Olson ES, et al. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones [J]. Jaro-Journal of the Association for Research in Otolaryngology, 2009, 10(1): 23-36.

PDF(1908 KB)

494

Accesses

0

Citation

Detail

段落导航
相关文章

/