激光喷丸作为一种新兴的金属材料表面强化技术,与普通喷丸相比,具有更显著的改性作用,使其在航空等领域有着重要的应用价值。随着该技术的工业化程度不断加深,需要加强对其工作状态的监测诊断,保证其良好的运行状况。由于声学信号不仅携带有丰富的工作特征信息,而且获取成本较低,并能够实现无损检测,所以将声学信号应用于激光喷丸的状态监测。通过分析由等离子体冲击波衰减所产生的声波信号,提取信号特征,进行过程监测。针对于冲击信号的非线性特征,从信号内相邻数据间相关性的角度,提出了一种新的冲击声信号特征挖掘方法。一方面对于模拟冲击信号进行了分析,另一方面,对于激光喷丸实际声信号进行了处理,表明该方法能够识别冲击信号的特征变化,可以用于监测激光喷丸的工作过程,操作简单且速度较快,具有较好的应用前景。
Abstract
As an innovative surface treatment of metal material,laser peening makes greater performance in improving the mechanical property comparing with the conventional shot peening,and it can bring significant contributions to various fields like aerocraft industry. In accordance with the developing pace of its industrialization,the condition monitoring,aiming at maintaining a good working state,is arousing more and more attentions. The acoustic signal with lower cost contains abundant information related to the operating process,and it can be used as non-destructive condition detection of the laser peening. The shock acoustic signal,which is propagating from the original plasma shock wave,was analyzed to extract the valuable characteristics to monitor the process. Considering the nonlinearity of the shock acoustic signal,a new signal processing method was proposed,based on the correlation between the neighbor data in the signal array. On one hand,it was used in analyzing the simulating shock-wave signal; on the other hand,it was applied in studying the practical signal obtained from the laser shock processing. It was shown that the novel method could detect the shock wave signal efficiently with easy and quick operation. It thus has potential in applications.
关键词
激光喷丸 /
声学信号 /
状态监测 /
相关性
{{custom_keyword}} /
Key words
laser peening /
acoustic signal /
condition monitoring /
correlation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] QIAO Hongchao. Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications [J].Applied Surface Science, 2015(351): 524-530.
[2] CHARLES S M, TAO Wei, LIN Ye, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review [J]. International Journal of Fatigue, 2002(24): 2012-1036.
[3] 曹子文,邹世坤,车志刚,等. 航空发动机叶片激光冲击处理过程控制研究[J].航空发动机,2011,37(1): 60-62.
CAO Ziwen, ZOU Shikun, CHE Zhigang, et al. Research on process control of laser shock peening for aeroengine blade[J]. Aeroengine, 2011, 37(1): 60-62.
[4] CHEE K T, PHIL I, DAVID M. A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears [J].Mechanical System and Signal Processing, 2007(21): 208-233.
[5] JENA D P, PANIGRAHI S N. Automatic gear and bearing fault localization using vibration and acoustic signals [J]. Applied Acoustics, 2015(98): 20-33.
[6] 鲁文波,蒋伟康. 利用声场空间分布特征诊断滚动轴承故障[J].机械工程学报,2012,48(13):68-72.
LU Wenbo, JIANG Weikang. Diagnosing rolling bearing faults using spatial distribution features of sound field [J]. Journal of Mechanical Engineering, 2012, 48(13): 68-72.
[7] ZHAO Rui, XU Rongqing, SHEN Zhonghua, et al. Dynamics of laser-induced shock wave by optical probe in air [J]. Optik, 2006(117): 299-302.
[8] AGUILERA J A, ARAGON C. Characteristic of laser-induced plasma during its expansion in air by optical emission spectroscopy: Observation of strong explosion self-similar behavior [J]. Spectrochimica Acta Part B, 2014(97):86-93.
[9] 卞保民,陈建平,杨玲,等. 空气中激光等离子体冲击波的传输特性研究[J].物理学报,2000,49(3):445-448.
BIAN Baomin, CHEN Jianping, YANG Ling, et al.The transmission characteristic of airborne laser plasma shock wave [J]. Acta Physica Sinica, 2000, 49(3): 445-448.
[10] 卞保民,杨玲,陈笑,等. 激光等离子体及点爆炸空气冲击波前运动方程的研究[J].物理学报,2002,51(4):809-812.
BIAN Baomin, YANG Ling, CHEN Xiao, et al. Study of the laser –induced plasmas and the kinematics of shock waves in air by a way intense explosion [J]. Acta Physica Sinica, 2002, 51(4): 809-812.
[11] BURGER M, NIKOLIC Z. Frequency domain and wavelet analysis of the laser-induced plasma shock waves [J]. Spectrochimica Acta Part B, 2015(110): 70-78.
[12] 邹彪,陈建平,倪晓武. 强激光等离子体有关物理量的声学测量[J]. 激光技术,2000,24(6):366-369.
ZOU Biao, CHEN Jianping, Ni Xiaowu. Acoustic measurement of parameters of laser induced plasma on the target[J]. Laser Technology, 2000, 24(6): 366-369.
[13] 乔红超,赵吉宾. 激光冲击强化在线检测系统设计及应用[J].激光与光电子学进展,2013(7):51-55.
QIAO Hongchao, ZHAO Jibin. Design and implementation of online laser peening detection system[J]. Laser & Optoelectronics Progress, 2013(7):51-55.
[14] 范勇,王声波,吴鸿兴,等. 航空铝合金材料激光冲击强化实验研究[J]. 激光技术,2003,27(4):273-275.
FANG Yong, WANG Shengbo, WU Hongxing, et al. Experimental research of laser shock processing on aerial aluminum alloy [J]. Laser Technology, 2003,27(4): 273-275.
[15] 邹彪.关于激光等离子体声波的数学模型[J].数学的实践与认识,2007,37(15):65-69.
ZOU Biao. Mathematical Model of Laser Plasma Voice Wave [J]. Mathematics in Practice and Theory, 2007, 37(15): 65-69.
[16] 杜红棉,祖静,马铁华,等. 自由场传感器外形结构对冲击波测试的影响研究[J].振动与冲击,2011,30(11):85-89.
DU Hongmian, ZU Jing, MA Tiehua, et al. Effect of mount configuration of free-field transducers on shock wave measurement [J].Journal of Vibration and Shock, 2011, 30(11): 85-89.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}