基于混合萤火虫算法的桥梁颤振分析方法

陶仕博1,2,汤爱平1,2,胡庆杰1,2, 刘克同3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 144-150.

PDF(943 KB)
PDF(943 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 144-150.
论文

基于混合萤火虫算法的桥梁颤振分析方法

  • 陶仕博1,2,汤爱平1,2,胡庆杰1,2, 刘克同3
作者信息 +

Flutter analysis for bridges based on a hybrid firefly algorithm

  • TAO Shibo1,2,TANG Aiping1,2,HU Qingjie1,2,LIU Ketong3
Author information +
文章历史 +

摘要

在进行颤振临界状态分析时需要求解高次非线性方程组,为了克服传统解法的缺陷,采用混合萤火虫算法对方程组进行求解。使用双参数优化模型,将桥梁颤振临界状态的求解问题转化为优化问题。为弥补萤火虫算法的不足,在萤火虫算法基础上,将量子遗传算法的量子计算、交叉和变异操作与萤火虫算法相结合,提出一种混合萤火虫算法。最后,通过若干试验对比分析,证实了该优化模型的可靠性及求解方法的有效性。

Abstract

When performing flutter analysis,high-order strong nonlinear equations need to be solved. For overcoming the difficulties encountered by traditional methods,a hybrid firefly algorithm was used to solve the equations. The solution of the critical flutter state problem was converted to an optimization problem by using a double-parameter optimization model. Therefore the optimization model can be employed to calculate the critical velocity and the critical frequency of two or three degrees of freedom flutter. To compensate shortcoming of the firefly algorithm,a hybrid firefly algorithm was proposed and used for searching the optimal solution of the optimization model. Finally,the reliability and the validity of the optimization model as well as its solution were confirmed by numerical and experimental examples.  

关键词

颤振;优化模型;量子遗传算法 / 混合萤火虫算法;最优解

Key words

flutter / optimization model / quantum genetic algorithm / hybrid firefly algorithm / the optimal solution

引用本文

导出引用
陶仕博1,2,汤爱平1,2,胡庆杰1,2, 刘克同3. 基于混合萤火虫算法的桥梁颤振分析方法[J]. 振动与冲击, 2017, 36(4): 144-150
TAO Shibo1,2,TANG Aiping1,2,HU Qingjie1,2,LIU Ketong3. Flutter analysis for bridges based on a hybrid firefly algorithm[J]. Journal of Vibration and Shock, 2017, 36(4): 144-150

参考文献

[1]王凯,廖海黎,李明水. 基于风洞试验的大跨度钢桁梁悬索桥颤振性能研究[J]. 振动与冲击, 2015, 34(15):175-180.
Wang Kai, Liao Hai-li, Li Ming-shui. Flutter stability study of a long-span suspension bridge with steel truss based on wind tunnel testing [J]. Journal of Vibration and Shock, 2015, 34(15): 175-180.
[2] Mishra S S, Kumar K, Krishna P. Multimode flutter of long-span cable-stayed bridge based on 18 experimental aeroelastic derivatives [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(1):83–102.
[3]刘克同, 汤爱平,刘玥君,王楠.基于浸没边界和格子玻尔兹曼的流固耦合算法[J].华中科技大学学报(自然科学版),2015, 43(1):61-66.
   Liu Ke-tong, Tang Ai-ping, Liu Yue-jun, Wang Nan. Fluid-structure interaction method using immersed boundary and Lattice Boltzmann Method [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(1):61-66.
[4]谷迎松,杨智春,王巍.一类基于颤振行列式的颤振分析新方法[J].航空动力学报, 2009, 24(4) :815-818.
Gu Ying-song, Yang Zhi-chun,Wang We. New type of flutter solution based on flutter determinant [J]. Journal of Aerospace Power,2009, 24(4) : 815-818.
[5] 许福友, 陈艾荣,王达磊.搜索平板颤振临界风速的追赶法[J].工程力学,2005, 22(5): 48-53.
Xu Fu-you, Chen Ai-rong, Wang Da-lei. Pursuit method for searching critical flutter wind velocity of flat plates [J]. Engineering Mechanics, 2005, 22(5) 48-53.
[6] Lee H E, Vu T V, Yoo S Y, Lee H Y. A simplified evaluation in critical frequency and wind speed to bridge deck flutter [C]. Procedia Engineering: The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction. 2011: 1784-1790.
[7]杨宇,李紫珠,何知义,程军圣. QGA-VPMCD智能诊断模型研究[J]. 振动与冲击, 2015, 34(13): 31-35.
Yang Yu, LI Zi-zhu, He Zhi-yi, Cheng Jun-sheng. The intelligent diagnosis model research of QGA-VPMCD[J]. Journal of Vibration and Shock, 2015, 34(13): 31-35.
[8] 许福友, 陈艾荣, 梁艳. 平板颤振参数研究[J].同济大学学报(自然科学版), 2005, 32(10):1365-1370.
 Xu Fu-you, Chen Ai-rong, Liang Yan. Research on flutter parameters of flat plate[J]. Journal of Tongji University (Natural Science), 2005, 32(10):1365-1370.
[9] 许福友 桥梁结构颤振导数识别与颤振分析[D].同济大学博士学位论文,2006.
 [10] 许福友, 陈艾荣,张哲, 王达磊. 确定桥梁模型颤振临界风速实用方法[J],振动与冲击,2008, 27 (12):97-100.
Xu Fu-you, Chen Ai-rong, Zhang Zhe, Wang Da-lei. Practical technique for determining critical flutter wind speed of bridge model [J]. Journal of Vibration and Shock, 2008, 27(12):97-100.
[11] Van der Put. Rigidity of structures against aerodynamic forces [C]. IABSE, 1976.
[12]黄凯, 周永权. 带交尾行为的混沌人工萤火虫优化算法[J]. 计算机科学, 2012, 39(3):231-234.
 Huang Kai, Zhou Yong-quan. Chaotic artificial glowworm swarm optimization algorithm with mating behavior[J]. Computer Science, 2012, 39(3): 231-234.
[13]刘长平,叶春明. 具有混沌搜索策略的萤火虫优化算法[J].系统管理学报,2013, (4):538-543.
 Liu Chang-ping, Ye Chun-ming. Firefly algorithm with chaotic search strategy[J]. Journal of systems & management, 2013, (4): 538-543.
[14]Krishnanand K N, Ghose D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal function[J]. Swarm Intelligence, 2009, 3(2): 87-124.
[15]Yang, X. S., 2007. Firefly Algorithm, Nature-Inspired Metaheuristic Algorithms. Wiley Online Library, pp. 79-90.
[16]Zouache D, Nouioua F, Moussaoui A. Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems[J]. Soft Computing, 2015.
[17] Rigas I, Economou G, Fotopoulos S. Efficient modeling of visual saliency based on local sparse representation and the use of hamming distance[J]. Computer Vision and Image Understanding, 2015, 134: 33-45.
[18]Theodorson T. General theory of aerodynamic instability and the mechanism of flutter [R]. NACA Report No. 496,1935.
[19] Korlin R, Starossek U. Wind tunnel test of an active mass damper for bridge decks [J]. Journal of Wind Engineering and Industrial Aerodynamics,  2007. 95(4): 267-277.
[20] 陈政清. 桥梁风工程[M]. 人民交通出版社,2005.
   Chen Z Q. Bridge wind engineering[M]. China Communications Press, 2005.
[21]Poulsen N K, Damsgaard A, Reinhold T A. Determination of flutter derivatives for the Great Belt Bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics 1992, 41 (1 -3) :153-164.
[22]Larsen A, Walther J H. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68:253-265.
[23] Larsen A, Walther J H. Discrete vortex simulation of flow around five generic bridge deck sections. Journal of Wind [J].Engineering and Industrial Aerodynamics, 1997, 77-78:591-602.
[24] 祝志文,陈政清. 数值模拟桥梁断面气动导数和颤振临界风速[J].中国公路学报, 2004, 17(3):41-50.
Zhu Zhi-wen, Chen Zheng-qing. Numerical simulations for aerodynamic derivatives and critical flutter velocity of bridge deck [J]. China Journal of Highway and Transport,2004, 17(3): 41-50.
[25] 崔益华,陈国平. 桥梁颤振导数的耦合强迫振动仿真识别[J]. 振动工程学报, 2007,20(1):35-39.
Cui Yi-hua, Chen Guo-ping. Simulations for identification of flutter derivatives of bridge section using the coupled- forced - vibration method [J]. Journal of Vibration Engineering, 2007, 20 (1):35-39.
 

PDF(943 KB)

442

Accesses

0

Citation

Detail

段落导航
相关文章

/