基于动网格降阶算法的机翼颤振边界预测

仲继泽1,徐自力1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 185-191.

PDF(2793 KB)
PDF(2793 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 185-191.
论文

基于动网格降阶算法的机翼颤振边界预测

  • 仲继泽1,徐自力1
作者信息 +

Wing flutter prediction using a reduced dynamic mesh method

  • ZHONG Jize,XU Zili
Author information +
文章历史 +

摘要

基于弹性体动网格技术,本文发展了一种用于机翼流场网格变形的降阶算法。将流场网格所包围的空间区域视为虚拟弹性体。以虚拟弹性体变形的静力平衡方程为基础,结合机翼的振动控制方程,推导了机翼与虚拟弹性体的整体的振动控制方程。通过模态叠加方法计算机翼和流场网格节点的位移,进而得到变形后的流场网格。考虑到机翼颤振多为一阶弯曲和扭转振动,所以在流场网格节点位移的计算中只需考虑一阶弯曲和扭转振型。为了保证计算精度,本文在计算中同时考虑了2阶弯曲和扭转振型。RANS方程为流体控制方程,采用Spalart–Allamras湍流模型,结合本文的动网格降阶算法,对AGARD Wing 445.6颤振边界进行了流固耦合计算。计算结果相对于实验值的偏差小于2%,且与已有的弹性体动网格方法比,计算时间减少了54.8%。

Abstract

In this paper,a reduced method for flow mesh deformation around a wing was developed based on the elastic solid method. The flow mesh domain was assumed to be a pseudo elastic solid. The total vibration equation for the wing with the pseudo elastic solid together was derived using the static equilibrium equation of the pseudo elastic solid and the vibration equation of the wing. The nodal displacements for the wing and flow mesh were computed through modal superposition and the deformed flow mesh was obtained. Considering that wing flutter often appeared as the 1st bending and torsion flutter,the nodal displacements for the flow mesh could be calculated by modal superposition of the 1st bending and torsion mode. To ensure the computational accuracy,the 2nd bending and torsion mode were also considered. The flutter boundary of the AGARD Wing 445.6 was predicted using the present dynamic mesh method coupled with the RANS equations and the Spalart-Allamras turbulent model. The relative error of the calculated results to the experimental data was less than 2%. The computing time was reduced by 54.8% compared with the pre-existing elastic solid method.

关键词

机翼颤振 / 流固耦合 / 动网格 / 虚拟弹性体 / 模态叠加

Key words

wing flutter / fluid structure interaction / dynamic mesh / pseudo elastic solid / modal superposition

引用本文

导出引用
仲继泽1,徐自力1 . 基于动网格降阶算法的机翼颤振边界预测[J]. 振动与冲击, 2017, 36(4): 185-191
ZHONG Jize,XU Zili. Wing flutter prediction using a reduced dynamic mesh method[J]. Journal of Vibration and Shock, 2017, 36(4): 185-191

参考文献

[1] Crickmore P. Nighthawk F-117 Stealth Fighter[M]. Zenith Imprint, 2003
[2] Burnett E, Atkinson C, Beranek J, et al. NDOF Simulation model for flight control development with flight test correlation[C]//AIAA Modeling and Simulation Technologies Conference. 2010, 3: 7780-7794
[3] Schuster D M, Liu D D, Huttsell L J. Computational aeroelasticity: success, progress, challenge[J]. Journal of Aircraft, 2003, 40(5): 843-856
[4] Albano E, Rodden W P. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows[J]. AIAA journal, 1969, 7(2): 279-285
[5] Ashley H. Piston theory-a new aerodynamic tool for the aeroelastician[J]. Journal of the Aeronautical Sciences (Institute of the Aeronautical Sciences), 1956, 23(12): 1109-1118
[6] Yurkovich R N, Liu D D, Chen P C. The state-of-the-art of unsteady aerodynamics for high performance aircraft[J]. AIAA paper, 2001, 428: 2001
[7] 谢亮, 徐敏, 李杰, 等. 基于 CFD/CSD 耦合的颤振与动载荷分析方法[J]. 振动与冲击, 2012, 31(3): 106-110
XieLiang,Xu Min, Li Jie,CaiTianxing. Flutter and dynamic analysis based on CFD/CSD coupling method [J]. Journal of Vibration and Shock, 2012, 31(3): 106-110
[8] Keye S. Fluid-structure coupled analysis of a transport aircraft and flight-test validation[J]. Journal of Aircraft, 2011, 48(2): 381-390
[9] Chen X, Zha G C, Yang M T. Numerical simulation of 3-D wing flutter with fully coupled fluid–structural interaction[J]. Computers & fluids, 2007, 36(5): 856-867
[10] 史爱明, 杨青, 杨永年. 非结构运动网格下的三维机翼颤振数值分析[J]. 振动与冲击, 2006, 24(6): 27-28
Shi Aiming, Yang Qing, Yang Yongnian. Numerical flutter analysis of a 3-D wing using unstructured dynamic mesh Euler method [J]. Journal of Vibration and Shock, 2006, 24(6): 27-28
[11] Tezduyar T E. Stabilized finite element formulations for incompressible flow computations[J]. Advances in applied mechanics, 1991, 28: 1-44
[12] 陈炎, 曹树良, 梁开洪, 等. 基于温度体模型的动网格生成方法及在流固耦合振动中的应用[J]. 振动与冲击, 2010, 29(4): 1-5
Chen Yan, Cao Shuliang, Liang Kaihong, Zhu Baoshan. A new dynamic grids based on temperature analogy and its application in vibration engineering with fluid-solid interaction [J]. Journal of Vibration and Shock, 2010, 29(4): 1-5
[13] 谢亮, 徐敏, 张斌, 等. 基于径向基函数的高效网格变形算法研究[J]. 振动与冲击, 2013, 32(10): 141-145
XieLiang, Xu Min, Zhang Bin, An Xiaoming. Space points reduction in grid deforming method based on radial basis functions[J]. Journal of Vibration and Shock, 2013, 32(10): 141-145
[14] Bottasso C L, Detomi D, Serra R. The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39): 4244-4264
[15] Bar-Yoseph P Z, Mereu S, Chippada S, et al. Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics[J]. Computational Mechanics, 2001, 27(5): 378-395
[16] Stein K, Tezduyar T, Benney R. Mesh moving techniques for fluid-structure interactions with large displacements[J]. Journal of Applied Mechanics, 2003, 70(1): 58-63
[17] Huo S H, Wang F S, Yan W Z, et al. Layered elastic solid method for the generation of unstructured dynamic mesh[J]. Finite Elements in Analysis and Design, 2010, 46(10): 949-955
[18] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows[C]. AIAA Paper 92: 0439
[19] Zienkiewicz O C, Taylor R L. The finite element method for solid and structural mechanics[M]. Butterworth-heinemann, 2005:563-588
[20] Livne E, Weisshaar T A. Aeroelasticity of nonconventional airplane configurations-Past and future[J]. Journal of Aircraft, 2003, 40(6): 1047-1065
[21] Demirdžić I, Lilek Ž, Perić M. A collocated finite volume method for predicting flows at all speeds[J]. International Journal for Numerical Methods in Fluids, 1993, 16(12): 1029-1050
[22] Yates Jr E C. AGARD standard aeroelastic configurations for dynamic response I-wing 445.6[R]. ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT NEUILLY-SUR-SEINE (FRANCE), 1988
[23] Beaubien R J, Nitzsche F, Feszty D. Time and frequency domain flutter solutions for the AGARD 445.6 wing[C]. Paper No. IF-102, IFASD, 2005
[24] Rumsey C L, Sanetrik M D, Biedron R T, et al. Efficiency and accuracy of time-accurate turbulent Navier-Stokes computations[J]. Computers & Fluids, 1996, 25(2): 217-236
[25] Im H S, Chen X Y, Zha G C. Prediction of a Supersonic Wing Flutter Boundary Using a High Fidelity Detached Eddy Simulation[C]. AIAA Paper, 2012, 39: 9-12

PDF(2793 KB)

Accesses

Citation

Detail

段落导航
相关文章

/