高速车铣加工三维颤振的稳定性分析与试验研究

关跃奇1,魏克湘1,2,张文明3,关汗青4

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 192-197.

PDF(2725 KB)
PDF(2725 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 192-197.
论文

高速车铣加工三维颤振的稳定性分析与试验研究

  • 关跃奇1,魏克湘1,2,张文明3,关汗青4
作者信息 +

Stability analysis and experimental research for three-dimensional dither in processing of high speed milling

  • GUAN Yueqi1,WEI Kexiang1,2,ZHANG Wenming3,GUAN Hanqing4
Author information +
文章历史 +

摘要

针对立铣刀高速车铣加工,基于其切削原理采用解析法建立三维颤振稳定域的理论模型。在立铣刀四轴车铣加工模态试验基础上,仿真分析了颤振稳定域叶瓣图,结果表明立铣刀高速车铣加工产生颤振的条件与铣刀几何形状、工件材料、铣刀转速、切削深度和机床结构的频率响应函数等密切相关。在进行车铣切削颤振稳定域试验时,其切削力频谱分析的结果表明:当刀齿切入频率起主导作用时,切削过程是无颤振和稳定的;当系统模态频率起主导作用时,将产生颤振并测得切削力和表面粗糙度值都大于或高于无颤振情况。因此该理论模型及仿真结果对立铣刀车铣加工零件的加工效率和加工精度可提供相应的理论指导。

Abstract

Aiming at high speed turn-milling by end mill,the theoretical model in stability range of three-dimensional dither was established on the basis of its cutting principle by using an analytic method. Based on modal test of 4-axial turn-milling by end mill,the leaf figure of the dither stability range was simulated and analyzed. The results show that: the geometrical shape of mill,material of work-piece,rotating speed of mill,cutting depth and the frequency response function of machine-tool’s structure are closely related to the conditions that can produce dither in high speed turn-milling by end mill. In the test of stability range of dither in turn-milling,the results of spectrum analysis for cutting force show that: cutting is stable and non-dither when cutting-in frequency of cutter tooth plays the leading role in force spectrum. Dither is produced when modal frequency of the system plays the leading role in force spectrum. The measured value of cutting force and surface roughness are also higher than those in the condition of non-dither. Thus the theoretical model and results of simulation can provide theoretical guidance for processing efficiency and surface quality of work-piece manufactured by end mills.

关键词

立铣刀 / 高速车铣 / 颤振稳定性 / 建模

Key words

end mill / high speed turn-milling / dither stability / modeling

引用本文

导出引用
关跃奇1,魏克湘1,2,张文明3,关汗青4. 高速车铣加工三维颤振的稳定性分析与试验研究[J]. 振动与冲击, 2017, 36(4): 192-197
GUAN Yueqi1,WEI Kexiang1,2,ZHANG Wenming3,GUAN Hanqing4. Stability analysis and experimental research for three-dimensional dither in processing of high speed milling[J]. Journal of Vibration and Shock, 2017, 36(4): 192-197

参考文献

[1] 勾治践,于骏一. 变速切削的研究现状[J]. 吉林工学院学报,1997,18(4):14-17.
GOU Zhijian, YU Junyi. The present status of the suppression of chatter in metal cutting with varying spindle speed[J]. Journal of Jilin Institute of Technology, 1997, 18(4): 14-17.
[2] 贾春德,姜增辉. 正交车铣运动的矢量模型及表面粗糙度的理论分析[J]. 机械工程学报,2001,37(3):62-64.
JIA Chunde, JIANG Zenghui. Vector modeling of orthogonal turn-milling movement and theoretical analysis on roughness of surface [J]. Chinese Journal of Mechanical Engineering, 2001, 37(3):62-64.
[3] KORIC, Stephan, T UDILJAK, D CIGLAR. Study of the suitability of the machining of rotating surfaces[J]. Transactions of Famena, 2008, 32(2): 69-83.
[4] SK CHOUDHURY, JB BAJPAI. Investigation in orthogonal turn-milling towards better surface finish[J]. Journal of Materials Processing Technology, 2005, 170(3): 487-493.
[5] Yueqi Guan, Hanqing Guan, Gaosheng Wang. The modeling of cutting force in high-speed milling for end mill[J]. Sensors & Transducer, 2014(8): 210-217.
[6] SABAHUDIN E, EDIN B, AMIRA S. Comparison of machined surface quality obtained by high-speed machining and conventional turning[J]. Machining Science and Technology, 2006, 11(4): 531-551.
[7] 姜增辉,贾春德. 无偏心正交车铣理论切削力[J]. 机械工程学报,2006,42(9):23-28.
JIANG Zenghui, JIA Chunde. Theoretical cutting force of non-eccentricity orthogonal turn-milling[J]. Chinese Journal of Mechanical Engineering, 2006, 42(9):23-28.
[8] 朱立达.  车铣加工中心动态特性及其加工机理的仿真与试验研究[D]. 沈阳:东北大学,2010.
ZHU Lida. Study on simulation and experiment of turn-milling mechanism and dynamic characteristics[D]. Shenyang: Northeastern University, 2010.
[9] Y ALTINTAS. Analytical prediction of three dimensional chatter stability in milling[J]. JSME International Journal, 2001, 44(3): 717-723.
[10]Y ALTINTAS, G STEPAN, D MERDOL. Chatter stability of milling in frequency and discrete time domain [J]. Annals of the CIR, 2008, 1(1): 35-44.
[11] E SHAMOTO, K AKAZAWA. Analytical prediction of chatter stability in ball end milling with tool inclination[J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 351 -354.
[12] A SCHUBERT, A NESTLER, R FUNKE. Influence of kinematics on the surface integrity in orthogonal turn-milling of aluminium matrix composites[A]. 11th International Conference of the European Society for Precision Engineering and Nanotechnology[C], 2011: 480-483.
[13] M POGACINK, J KOPAC. Dynamic stabilization of the turn-milling process by parameter optimization[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2000, 214(4): 127-135.
[14] 丛春晓,刘恒,吕凯波,景敏卿. 细长轴切削颤振的稳定性分析和实验研究[J].振动与冲击,2012,31(5):73-76.
CONG Chunxiao, LIU Heng, LU kaibo, JING Minqing. Stability analysis and test for cutting chatter of a slender shaft[J]. Journal of Vibration and shock, 2012, 31(5): 73-76.
[15] 李忠群,刘强. 圆角铣削颤振稳定域建模与仿真研究[J].机械工程学报,2010,46(7):181-186.
LI Zhongqun, LIU Qiang. Modeling and simulation of chatter stability for circular milling[J]. Journal of Mechanical Engineering, 2010, 46(7):181-186.
[16] 汤爱君,刘战强. 铣削加工系统三维稳定性理论研究与进展[J]. 工具技术,2008,42(5):3-5.
TANG Aijun, LIU Zhanqiang. Perspectives and progress in three-dimensional stability lobes in milling chatter system[J]. Tool Engineering, 2008, 42(5): 3-5.
[17] 石莉,陈尔涛,姜增辉.  正交车铣铝合金薄壁回转体振动信号的试验分析[J].  兵工学报,2009,30(3):356-360.
SHI Li, CHEN Ertao, JIANG Zenghui. Test analysis on vibration signal of thin aluminium-alloy cylinder machined with orthogonal turn-milling[J]. Acta Armamentarii, 2009, 30(3): 356-360.
[18] F YANG, B ZHANG J YU. Chatter suppression via an oscillating cutter[J]. Journal of Manufacturing Science and Engineering, 1999, 121(1): 54-60.
[19] 冯冬菊,赵福令,徐占国,郭东明. 超声波铣削加工材料去除率的理论模型[J]. 中国机械工程,2006,17(13):1399-1403.
FENG Dongju, ZHAO Fuling, XU Zhanguo, GUO Dongming. Mathematic model of material removal rate for ultrasonic milling[J]. China Mechanical Engineering, 2006, 17(13): 1399-1403.

PDF(2725 KB)

701

Accesses

0

Citation

Detail

段落导航
相关文章

/