柱形波纹压溃元件轴向冲击力学行为研究

付本元1,廖昌荣1,李祝强1,章鹏1,简晓春2,吴春江2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 21-27.

PDF(2125 KB)
PDF(2125 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 21-27.
论文

柱形波纹压溃元件轴向冲击力学行为研究

  • 付本元1,廖昌荣1,李祝强1,章鹏1,简晓春2,吴春江2
作者信息 +

A study on the mechanical behavior of a crushable cylindrical corrugated component under axial impact

  • FU Benyuan1, LIAO Changrong1, LI Zhuqiang1, ZHANG Peng1, JIAN Xiaochun2, WU Chunjiang2
Author information +
文章历史 +

摘要

针对冲击载荷作用下多层柱形波纹压溃元件的力学特性分析非常困难的问题,结合柱形波纹压溃元件的冲击压溃变形特征,将柱形波纹压溃元件的变形划分为弹性变形阶段、壁面接触前的塑性变形阶段、混合塑性变形阶段、壁面接触过程中的塑性变形阶段,研究了轴向冲击下柱形波纹压溃元件变形抗力的理论计算方法。利用Matlab Simulink软件编程,计算分析了不同高度落锤冲击柱形波纹压溃元件产生的变形抗力与压溃量之间的映射特性,并与实验结果进行了比较。研究结果表明:在不同跌落高度冲击下,理论计算的变形抗力与实验结果吻合较好,证明所提出的理论分析方法是合理的,对波纹压溃缓冲元件的工程应用具有指导意义。

Abstract

Analyzing the mechanical behavior of a crushable multi-cylindrical-corrugated component under impact load is currently a challenge. This paper presents a theoretical methodology for evaluation of the deformation resistance of a crushable cylindrical-corrugated component under axial impact load. By investigating the collapse deformation characteristics, the deformation was divided into four sections: elastic deformation stage, plastic deformation stage before surface contact, mixed plastic deformation stage, and plastic deformation stage during surface contact. The theoretical mapping relationship between the deformation resistance and crushed displacement under different drop heights was obtained by Matlab Simulink. The theoretical relationship was compared with the experimental result, which showed a good agreement between the predicted resistant forces and the testing data under various drop heights. The result shows the feasibility of the proposed analytical methodology for the practical application of the crushable cylindrical-corrugated component.

关键词

波纹压溃元件  / 冲击载荷  / 变形抗力  / 应变强化效应  / 应变率硬化效应

Key words

crushable cylindrical-corrugated component / impact load / deformation resistance / strain-strengthening effect / strain rate hardening effect

引用本文

导出引用
付本元1,廖昌荣1,李祝强1,章鹏1,简晓春2,吴春江2. 柱形波纹压溃元件轴向冲击力学行为研究[J]. 振动与冲击, 2017, 36(4): 21-27
FU Benyuan1, LIAO Changrong1, LI Zhuqiang1, ZHANG Peng1, JIAN Xiaochun2, WU Chunjiang2. A study on the mechanical behavior of a crushable cylindrical corrugated component under axial impact[J]. Journal of Vibration and Shock, 2017, 36(4): 21-27

参考文献

[1] Singace A A, El-Sobky H. Behaviour of axially crushed corrugated tubes[J]. International Journal of Mechanical Sciences, 1997, 39(3):249-268.
[2] Hosseinipour S J, Daneshi G H. Energy absorbtion and mean crushing load of thin-walled grooved tubes under axial compression[J]. Thin-Walled Structures, 2003, 41(1):31-46.
[3] Eyvazian A, Habibi M K, Hamouda A M, et al. Axial crushing behavior and energy absorption efficiency of corrugated tubes[J]. Materials & Design, 2013, 54(2):1028–1038.
[4] 王晓, 刘星荣. 波纹管碰撞性能的试验研究[J].中国公路学报, 2001, 14(4):106-109.
WANG Xiao, LIU Xing-rong. Experiment study of the absorbing energy of corrugated tube [J]. China Journal of Highway and Transport, 2001, 14(4): 106-109.
[5] 张平, 马建, 那景新. 波纹管耐撞性的多目标优化[J]. 振动与冲击, 2015, 34(15):12-16.
ZHANG Ping, MA Jian, NA Jing-xin. Multi-objective optimization for crashworthiness of corrugated tubes [J]. Journal of Vibration and Shock, 2015, 34(15):12-16.
[6] Mamalis A G, Manolakos D E, Ioannidis M B, et al. Numerical modelling of the axial plastic collapse of externally grooved steel thin-walled tubes[J]. International Journal of Crashworthiness, 2003, 8(6):583-590.
[7] Galib D A, Limam A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes[J]. Thin-Walled Structures, 2004, 42(8):1103-1137.
[8] Zhang X, Huh H. Crushing analysis of polygonal columns and angle elements[J]. International Journal of Impact Engineering, 2010, 37(4):441-451.
[9] 谭丽辉, 徐涛, 张炜,等. 带有圆弧形凸槽金属薄壁圆管抗撞性优化设计[J]. 振动与冲击, 2013, 32(21):80-84.
TAN Li-hui, XU Tao, ZHANG Wei et al.. Crashworthiness optimization design for a metal thin-walled tube with convex grooves [J]. Journal of Vibration and Shock, 2013, 32(21):80-84.
[10] 谭丽辉, 谭洪武, 毛志强,等. 具有不同诱导槽结构的薄壁圆管抗撞性优化[J]. 振动与冲击, 2014(8):16-21.
TAN Li-hui, TAN Hong-wu, MAO Zhi-qiang et al.. Crashworthiness design optimization of thin-walled cylinders with different inducing grooves [J]. Journal of Vibration and Shock, 2014(8):16-21.
[11] 郝文乾.轴向冲击载荷下薄壁折纹管和波纹管的屈曲与能量吸收[D].太原:太原理工大学,2014.
HAO Wen-qian. Buckling and energy absorption of thin-walled origami tube and corrugated tube subjected to axial impacting[D]. Taiyuan: Taiyuan University of Technology, 2014.
[12] Liu Z, Hao W, Xie J, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns[J]. Thin-Walled Structures, 2015, 94:410-423.
[13] 贾志刚, 寿比南, 梅林涛. 有限元方法在膨胀节强度分析中的应用[J]. 压力容器, 2001, 18(4):43-45.
JIA Zhi-gang, SHOU Bi-nan, MEI Lin-tao. Application of FEM to the analysis of the structure strength of expansion joints [J]. Pressure Vessel Technology,2001,18(4):43-45.
[14] 杨义俊, 王心丰. 多层波纹管非线性有限元应力分析[J]. 压力容器, 2003, 20(9): 13-16.
YANG Yi-jun, WANG Xin-feng. Nonlinear finite element analysis of the multiply bellows [J]. Pressure Vessel Technology, 2003, 20(9): 13-16.
[15] 王帅, 王建军. 考虑层间摩擦的多层波纹管轴向刚度非线性有限元分析[J]. 压力容器, 2007, 24(12):12-15,32.
WANG Shuai, WANG Jian-jun. Nonlinear finite element analysis of multilayer bellows’ axial stiffness considering the influence of inter-layer friction [J]. Pressure Vessel Technology, 2007, 24(12):12-15,32.
[16] 李永生. 波形膨胀节实用技术[M]. 北京:化学工业出版社, 2000.
LI Yong-sheng. Practical technology of bellows expansion joints [M]. Beijing: Chemical Industry Press, 2000.
[17] Abramowicz W, Jones N. Dynamic axial crushing of circular tubes[J]. International Journal of Impact Engineering, 1984, 2(3):263-281.
[18] 李星星. 304不锈钢本构模型参数识别研究[D]. 武汉:华中科技大学,2012.
LI Xing-xing. Research on the constitutive model parameters identification of 304 stainless steel [D]. Wuhan: Huazhong University of Science and Technology, 2012.

PDF(2125 KB)

575

Accesses

0

Citation

Detail

段落导航
相关文章

/