针对横摇和纵摇非线性耦合下船舶的混沌运动,首次应用能量相位法研究了船舶动力系统在1:2内共振,第2阶主共振情形下系统的全局分叉及多脉冲混沌动力学行为,揭示了船舶运动存在模态作用、能量转移和多脉冲混沌运动的机理,并给出了船舶系统发生多脉冲混沌运动的参数区间。数值模拟验证了横摇和纵摇非线性耦合下船舶运动系统存在多脉冲混沌运动。
Abstract
The global dynamics of ship motions considering the nonlinear coupling between pitch and roll modes in the presence of one to two internal resonance and principal resonance of the second mode were investigated using the energy-phase method. A major goal of the paper was to reveal the mechanism about modes interaction,energy transfer and multi-pulse chaotic motions of the ship. The certain parameter regions in which multi-pulse chaotic motions that might occur were given. Numerical simulations were performed to confirm the theoretical predictions.
关键词
船舶动力学 /
非线性耦合 /
能量相位法 /
多脉冲混沌运动
{{custom_keyword}} /
Key words
ship dynamics /
nonlinear coupling /
energy-phase method /
multi-pulse chaotic motion
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Floude W. Remarks on Mr. Scott-Russell's papers on rolling. The papers of William Floude, 1955.
[2] Paulling J R, Rosenberg R M. On unstable ship motions resulting from nonlinear coupling[J]. Journal of Ship Research. 1959, 3(1): 36-46.
[3] Nayfeh A H, Mook D T, Marshall L R. Nonlinear coupling of pitch and roll modes in ship motions[J]. Journal of Hydronautics, 1973, 7(4): 145-152.
[4] Yang X D, Zhang W. Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations[J]. Nonlinear Dynamics, 2014, 78: 2547-2556.
[5] Nayfeh A H, Sanchez N E. Stability and complicated rolling resonses of ship in regular beam seas[J]. International Shipbuilding Progress, 1900, 37: 331-352.
[6] Falzarano M, Shaw S W, Troesh A W. Application of global methods for analyzing dynamic systems to ships rolling motion and capsizing[J]. International Journal of Bifurcation and chaos, 1992, 2: 101-115.
[7] Haller G, Wiggins S. Orbits homoclinic to resonances: the Hamiltonian case[J]. Physic D,1993, 66: 298-346.
[8] Haller G, Wiggins S. N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems[J]. Archive for Rational Mechanics and Analysis, 1995, 130: 25-101.
[9] Haller G, Wiggins S. Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrödingerequation[J]. Physic D, 1995, 85: 311-347.
[10] Haller G. Chaos Near Resonances[M]. New York: Springer-Verlag, 1999.
[11] Nayfeh A H, Mook D T. Nonlinear Oscillations[M]. Germany: Wiley-VCH, 1995.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}