基于能量方法的拉索尾流驰振风洞试验研究

吴其林1,华旭刚2,胡腾飞3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 218-225.

PDF(3362 KB)
PDF(3362 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 218-225.
论文

基于能量方法的拉索尾流驰振风洞试验研究

  • 吴其林1,华旭刚2,胡腾飞3
作者信息 +

Investigation on wake galloping of parallel cables by wind tunnel test based on an energy method

  • WU Qilin1,HUA Xugang1,HU Tengfei2
Author information +
文章历史 +

摘要

为了研究近距失稳区并列拉索尾流驰振性能,发展了基于能量方法的风洞试验方法。采用强迫振动装置重现了拉索尾流驰振现象,通过能量判断方法分析了下游拉索尾流驰振的运动方向和不稳定区域。从气动力对下游拉索做功的角度,研究了其振动机理,并对比分析了下游拉索不同振幅、来流风速以及频率对尾流驰振性能的影响。试验研究表明:基于能量分析方法所得到的结果与已有结论较为吻合,验证了该方法的可靠性。

Abstract

In order to study the wake galloping characteristics in a close spacing instability range,a series of wind tunnel tests based on an energy method were carried out. The imposed motion along quasi-elliptical orbits reproduced wake galloping phenomenon of a parallel cable by the forced vibration device. Based on the energy analysis method,the motion trajectory and the unstable region of the downstream cable was analyzed. And the mechanism of the wake galloping was studied from the work done by aerodynamic forces. The influence of amplitudes,velocities of wind flow and vibration frequencies on wake galloping of cables were further discussed. The investigation results show that the results with the energy method agree well with classical results and prove the reliability of the analysis method.

关键词

并列拉索 / 尾流驰振 / 能量分析方法 / 风洞试验 / 强迫振动

Key words

parallel cables / wake galloping / energy analysis method / wind tunnel test / forced vibration

引用本文

导出引用
吴其林1,华旭刚2,胡腾飞3. 基于能量方法的拉索尾流驰振风洞试验研究[J]. 振动与冲击, 2017, 36(4): 218-225
WU Qilin1,HUA Xugang1,HU Tengfei2. Investigation on wake galloping of parallel cables by wind tunnel test based on an energy method[J]. Journal of Vibration and Shock, 2017, 36(4): 218-225

参考文献

[1] 陈政清. 桥梁风工程[M]. 北京:人民交通出版社,2005, 1-8.
CHEN Zheng-qing. Wind engineering of bridge [M]. Beijing: China communication press, 2005,1-8.
[2] Tanaka H. Aerodynamics of cables. Fifth International Symposium on Cable Dynamics [C]. Italy, 2003: 11-21.
[3] Fujino Y, Kimura K, Tanaka H. Wind Resistant Design of Bridges in Japan: Developments and Practices [M]. New York: Springer-Verlag, 2012, 197-229.
[4] Li H, Laima S, Ou JP, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements [J].Engineering Structures, 2011,33(6): 1894–1907.
[5] Wardlaw R L, Cooper K R, Ko R G, et al. Wind tunnel and analytical investigations into the aeroelastic behavior of bundled conductors [J]. IEEE Transactions on Power Appa-ratus and Systems, 1975, 94(2): 642-654.
[6] Zdravkovich M M. The effects of interference between cir-cular cylinders in cross flow [J]. Journal of Fluids and Structures, 1987,2(1): 239–261.
[7] Tokoro S, komatsu H, Nakasu M, et al. A study on wake-galloping employing full aeroelastic twin cable model [J]. Journal of Wind Engineering and Industrial aerodynamics, 2000, 2(88): 247-261.
[8] 陈政清,刘慕广,刘志文. 基于气弹模型的串列主缆气动干扰试验研究[J].振动与冲击,2008, 27(8): 7-11.
CHEN Zheng-qing, LIU Mu-guang, LIU Zhi-wen. Experi-ment study on aerodynamic interference of tandem cables based on aeroelastic model [J]. Journal of Vibration and Shock, 2008, 27(8): 7-11.
[9] 李永乐,王涛,廖海黎. 斜拉桥并列拉索尾流驰振风洞试验研究[J]. 工程力学,2010, 27(SI): 216-221.
LI Yong-le, WANG Tao, LIAO Hai-li. Investigation on wake galloping of parallel cables in cable-stayed bridge by wind tunnel test [J]. Engineering Mechanics, 2010, 27(SI): 216-221.
[10] Diana G, Giappino S, Manenti A, et al. A numerical approach to reproduce subspan oscillations and comparison with experimental data [J]. IEEE Transactions on Power Delivery, 2014, 29(3): 1311-1317.
[11] Diana G, Belloli M, Giappino S, et al. Wind tunnel tests on two cylinders to measure subspan oscillation aerodynamic forces [J]. IEEE Transactions on Power Delivery, 2014, 29(3): 1273-1282.
[12] 严波,蔡萌琦,吕欣,等. 四分裂导线尾流驰振数值模拟研究[J]. 振动与冲击,2015, 34(1): 182-189.
YAN Bo, CAI Meng-qi, LV Xin, et al. Numerical simulation on wake galloping of quad bundle conductor[J]. Journal of Vibration and Shock, 2015, 34(1): 182-189.
[13] 黄伟峰,李勇,刘秋生,等. 桥梁吊杆索尾流驰振问题的数值研究[J]. 清华大学学报(自然科学版),2008, 48(11): 1931-1934.
HUANG Wei-feng, LI Yong, LIU Qiu-sheng, et al. Numeri-cal investigation of wake galloping of suspension bridge cables [J]. Journal of Tsinghua University (Natural Science Edition), 2008, 48(11): 1931-1934.
[14] 马如进,倪美娟. 中间索面斜拉桥并列拉索尾流驰振数值研究[J]. 振动与冲击,2013, 32(10): 91-94.
MA Ru-jin, NI Mei-juan. Numerical simulation on wake galloping of parallel cables of cable stayed bridge with central cable planes [J]. Journal of Vibration and Shock, 2013, 32(10): 91-94.
[15] 唐浩俊,李永乐,廖海黎. 基于能量方法的塔周长吊索尾流驰振性能研究[J]. 中国公路学报,2014, 27(8): 42-52.
TANG Hao-jun, LI Yong-le, LIAO Hai-li. Research on wake galloping of long suspenders near bridge tower based on energy method [J]. China Journal of Highway and Transport, 2014, 27(8): 42-52.
[16] 牛华伟,陈政清. 桥梁主梁断面18个颤振导数识别的三自由度强迫振动法[J]. 土木工程学报,2014, 47(4): 75-83.
NIU Hua-wei, CHEN Zheng-qing. Three degrees-of-freedom forced vibration method for identifying eighteen flutter derivations of bridge decks [J]. China Civil Engineering Journal, 2014, 47(4): 75-83.
[17] Simiu E, Scanlan R H. Wind effects on structures: funda-mentals and applications to design [M]. Third Edition. New York: Wiley-Interscience publication, 1996: 1-323.

PDF(3362 KB)

425

Accesses

0

Citation

Detail

段落导航
相关文章

/