基于ICA-CEEMD小波阈值的传感器信号去噪

赫 彬,张雅婷,白艳萍

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 226-231.

PDF(3025 KB)
PDF(3025 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 226-231.
论文

基于ICA-CEEMD小波阈值的传感器信号去噪

  • 赫 彬,张雅婷,白艳萍
作者信息 +

A method for sensor signal de-noising based on ICA-CEEMD wavelet threshold

  • HE Bin,ZHANG Yating,BAI Yanping
Author information +
文章历史 +

摘要

针对传感器在采集信号时混入不同的噪声,提出一种基于ICA-CEEMD小波阈值的组合去噪算法。该方法是对一维含噪信号进行剪切分段、平移和拼接,得到几个不同的含噪信号作为独立分量分析(ICA)的输入通道信号。通过ICA的盲源分离技术使得信号和噪声进行初步分离。再利用互补集合经验模态分解(CEEMD)对分离信号进行分解去噪,由于不同的高频和低频噪声,需要对分解的高阶和低阶固有模态函数(IMF)进行处理。对第一层和最后一层IMF利用3原则提取细节信息,进一步抑制模态混叠影响,重构去噪信号。最后,利用小波阈值对重构信号做去噪处理,提升去噪效果和性能指标。为验证该方法的有效性,进行了仿真和中北大学汾机实测实验,结果表明,该方法在去噪效果和性能指标上都优于小波软阈值去噪和基于CEEMD的小波阈值去噪方法,是一种有效的信号去噪新方法。

Abstract

A method for sensor signal de-noising based on ICA-CEEMD wavelet threshold was proposed for the separation of different noise and signal. The method was to carry out the shear segmentation,translation and mosaic of one-dimensional noisy signals,and obtain several different noisy signals as the channel signal for independent component analysis (ICA).The signal and noise were separated by the blind source separation of ICA. The separation signal was decomposed by the complementary ensemble empirical mode decomposition (CEEMD). Due to different high frequency and low frequency noise,the high order and low order intrinsic mode components (IMF) of the decomposition needed to be processed. The way of 3 sigma principle was used to extract the detail information of the first layer of IMFs and the final layer of IMFs,and restrain the mode mixing effects and reconstruct the signal of de-noising. Then,the wavelet threshold was used to deal with the reconstructed signal,so as to improve the de-noising effect and the performance index. In order to verify the validity of the method,the simulation experiment and the Fenji test of North University of China were carried out. The results show that the proposed method is better than the wavelet soft threshold de-noising and wavelet threshold de-noising method based on CEEMD.

关键词

ICA-CEEMD / 小波阈值 / 传感器 / 去噪 / 3?原则

Key words

ICA-CEEMD / wavelet threshold / sensor / de-noising / 3 sigma principle

引用本文

导出引用
赫 彬,张雅婷,白艳萍. 基于ICA-CEEMD小波阈值的传感器信号去噪[J]. 振动与冲击, 2017, 36(4): 226-231
HE Bin,ZHANG Yating,BAI Yanping. A method for sensor signal de-noising based on ICA-CEEMD wavelet threshold[J]. Journal of Vibration and Shock, 2017, 36(4): 226-231

参考文献

[1] 余先川,胡丹. 盲源分离理论与应用[M]. 北京:科学出版社,2011,1-14.
YU Xian-chuan,HU Dan. Theory and application of blind source separation [M]. Beijing: Science Press,2011,1-14.
[2] 王祁等. 传感器信息处理及应用[M]. 北京:科学出版社,2012,1-30.
WANG Qi,et al. Sensor information processing and Application [M]. Beijing:Science Press,2012:1-30.
[3] 梁斌,王鹏,白艳萍. 一种MEMS水听器信号去噪的组合算法研究[J]. 传感技术学报,2014,27(11):1477-1481.
LIANG Bin,WANG Peng,BAI Yan-ping. A combination algorithm for MEMS hydrophone signal and noise separation [J]. Chinese Joural of Senors and Actuators,2014,27(11):1477-1481.
[4] 高云超. 希尔伯特-黄变换在水声信号处理中的应用研究[D]. 哈尔滨:哈尔滨工程大学,2009.
GAO Yun-chao. A research on application of Hilbert-Huang transform in the underwater acoustic signal processing [D].
Harbin:Journal of Harbin Engineering University,2009.
[5] 樊姣荣,王晓瑶,刘文怡等.  MEMS矢量水听器阵列信号处理研究[J]. 传感器与微系统,2012,31(1):14-19.
FAN Jiao-rong,WANG Xiao-yao,LIU Wen-yi,et al. Study on signal processing based on MEMS vector hydrophone array [J]. Transducer and Microsystem Technologies,2012,31(1):14-19.
[6] 杨向林,严洪,许志等. 基于Hilbert-Huang变换的ECG消噪[J]. 电子学报,2011,39(4):819-824.
YANG Xiang-lin,YAN Hong,XU Zhi,et al. ECG de-noising base on Hilbert-Huang transform [J]. Acta Electronica Sinica,2011,39(4):819-824.
[7] 王文波,张晓东,汪祥莉. 基于主成分分析的经验模态分解消噪方法[J]. 电子学报,2013,41(7):1425-1430.
WANG Wen-bo,ZHANG Xiao-dong,WANG Xiang-li.
Empirical mode decomposition de-noising method based on principal component analysis [J]. Acta Electronica Sinica,2013,41(7):1425-1430.
[8] Cao Junhong,Wei Zhuobin. Independent component analysis in frequency domain and its application in structural vibration signal separation [J]. Procedia Engineering,2011,16:511-517.
[9] NORDEN E. HUANG,ZHENG SHEN,STEVEN R. LONG,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences,1998,454:903-995.
[10] 郝凤龙,徐更光,黄学义.基于经验模态分解及小波变换的炸药NQR信号处理[J]. 振动与冲击,2014,33(16):183-187.
HAO Feng-long,XU Geng-guang,HUANG Xue-yi. Processing of explosive nuclear quadrupole resonance signals based on empirical mode decomposition and wavelet transform [J]. Journal of Vibration and Shock,2014,33(16):183-187.
[11] Zhaohua Wu,and Norden E. Huang. Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis,2009,1:1-41.
[12] 王姣,李振春,王德营. 基于CEEMD的地震数据小波阈值去噪方法研究[J]. 石油物探,2014,53(2):164-172.
WANG Jiao,LI Zhen-chun,WANG De-ying. A method for wavelet threshold denoising of seismic data based on CEEMD [J]. Geophysical Prospecting for Petroleum,2014,53(2):164-172.
[13] Yong-Hwan Lee,Sang-Burm Rhee. Wavelet-based image denoising with optimal filter [J]. International Journal of Information Processing Systems,2005,1(1):32-35.
[14] 王鹏. 基于MEMS矢量水听器阵列的声目标定向定位技术研究[D]. 太原:中北大学,2013.
WANG Peng. Research on the DOA estimation and localization technology to acoustic target for MEMS vector hydrophone array [D]. Taiyuan:North University of China,2013.

PDF(3025 KB)

719

Accesses

0

Citation

Detail

段落导航
相关文章

/