考虑材料动态非线性影响的VLCC搁浅性能研究

王自力,傅杰,王哲,梁恩强,刘昆

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 73-80.

PDF(2628 KB)
PDF(2628 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 73-80.
论文

考虑材料动态非线性影响的VLCC搁浅性能研究

  • 王自力,傅杰,王哲,梁恩强,刘昆
作者信息 +

A study on the grounding performance of VLCC considering the influence of material dynamic nonlinearity

  • WANG Zili,FU Jie,WANG Zhe,LIANG Enqiang,LIU Kun
Author information +
文章历史 +

摘要

对船舶搁浅相关冲击问题进行数值仿真计算时,合理可靠的材料输入是保证仿真结果准确性的基础。本文首先开展了船用低碳钢材料的准静态拉伸和高速拉伸试验,以试验结果为基础,通过相关计算及校准研究,考虑材料硬化、失效应变以及应变率敏感性,得到满足材料动态非线性要求的仿真材料输入方法及参数。在此基础上,利用非线性有限元软件ABAQUS对VLCC舱段结构搁浅触礁事故进行仿真计算,从损伤变形、搁浅载荷以及搁浅过程中的能量吸收情况等方面分析船体结构的搁浅性能。本文的研究成果可为大型结构冲击问题数值仿真中的材料非线性输入提供参考和依据。

Abstract

Reasonable and reliable material inputs are essential to obtaining the accurate simulation results for some impact problems such as ship grounding. In this paper,quasi-static and high speed tensile tests have been conducted to obtain the static and dynamic mechanical properties of typical marine mild steel. Considering the plastic strain hardening,fracture strain and strain rate sensitivity,material nonlinearities for simulation inputs have been acquired through related benchmark studies. On this basis,the simulation of VLCC grounding accident has been carried out using the finite element software ABAQUS. The grounding performance of hull structures has been analyzed through damage deformation,grounding force,and energy absorption. The results provide reference and bases for the material nonlinearity inputs in numerical simulation of ship collision and grounding.

关键词

船舶搁浅 / 材料非线性 / 搁浅性能 / 拉伸试验 / 仿真校准

Key words

ship grounding / material nonlinearity / grounding performance / tensile test / benchmark study

引用本文

导出引用
王自力,傅杰,王哲,梁恩强,刘昆. 考虑材料动态非线性影响的VLCC搁浅性能研究[J]. 振动与冲击, 2017, 36(4): 73-80
WANG Zili,FU Jie,WANG Zhe,LIANG Enqiang,LIU Kun. A study on the grounding performance of VLCC considering the influence of material dynamic nonlinearity[J]. Journal of Vibration and Shock, 2017, 36(4): 73-80

参考文献

[1] 刘昆, 王自力, 张延昌,等. 基于全耦合技术的船体结构碰撞性能研究[J]. 船舶力学, 2015(5): 574-581.
Liu Kun, Wang Zili, Zhang Yanchang, Tang Wenyong. Collision behavior of structural analysis in ship collisions based on full-coupling technology [J]. Journal of ship Mechanics, 2015(5): 574-581.
[2] Villavicencio R. Response of ship structural components to impact loading[D]. Naval Architecture and Marine Engineering, 2012.
[3] Kun Liu, Zili Wang, Wenyong Tang, Yanchang Zhang, Ge Wang. Experimental and numerical analysis of laterally impacted stiffened plates considering the effect of strain rate[J]. Ocean Engineering, 2015, 99: 44-54.
[4] 刘峰, 王自力, 崔维成. 船舶结构的搁浅数值仿真研究[J]. 船舶, 2006(3): 24-27.
Liu Feng, Wang Zili, Cui Weicheng. Numerical simulation of grounding of ship structure[J]. Ship, 2006 (3): 24-27.
[5] 杨树涛, 姚熊亮, 张阿漫,等. 基于ABAQUS的船舶搁浅数值仿真研究[J]. 中国舰船研究, 2009, 4(4): 1-6.
Yang Shutao, Yao Xiongliang, Zhang Aman, Zhu Yongkai. Numerical simulations of ship grounding using ABAQUS[J]. Chinese Journal of Ship Research, 2009, 4(4): 1-6.
[6] Alsos H S, Amdahl J. On the resistance of tanker bottom structures during stranding [J].Marine Structure, 2007, 20(4): 218-237.
[7] Bin Liu, Villavicencio R. Plastic response and failure prediction of stiffened plates punched by a wedge[C]. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering,OMAE2013.
[8] Villavicencio R, Kim Y H, Cho S R, Guedes Soares C. Deformation process of web girders in small-scale tanker double hull structures subjected to lateral impact[J]. Marine Structures, 2013,32:84-112.
[9] Jones N. The credibility of predictions for structural designs subjected to large dynamic loadings causing inelastic behaviour[J]. International Journal of Impact Engineering, 2013, 53: 106-114.
[10] Bitner-Gregersen E, Bhattacharya S, Cherneva Z, et al. ISSC 2015 Committee I.1: Environment[C]. 19th International Ship and Offshore Structures Congress. 2015.
[11] Huh H, Lim J H, Park S H. High speed tensile test of steel sheets for the stress–strain curve at the intermediate strain rate[J]. International Journal of Automotive Technology, 2009, 10 (2): 195-204.
[12] Villavicencio R, Guedes Soares C. Numerical plastic response and failure of a pre-notched transversely impacted beam[J]. Ships and Offshore Structures. 2012, 7(4): 417-429.
[13] Dieter G E. Mechanical behavior under tensile and compressive loads. ASM Handbook, 2000, 8: 237-415.
[14] Zhang L, Egge ED, Bruhns H. Approval procedure concept for alternative arrangements[C]. Proceedings of 3rd International Conference on Collision and Grounding of Ships (ICCGS): Izu, Japan 2004: 87-96.
[15] Sormunen O V E, Castrén A, Romanoff J, et al. Estimating sea bottom shapes for grounding damage calculations[J]. Marine Structures, 2016, 45: 86-109.
[16] Kõrgesaar M, Romanoff J. Influence of mesh size, stress triaxiality and damage induced softening on ductile fracture of large-scale shell structures[J]. Marine Structures, 2014, 38: 1-17.

PDF(2628 KB)

640

Accesses

0

Citation

Detail

段落导航
相关文章

/