一类含有分数阶导数的参数激励振动问题

葛志新1,陈咸奖2, 陈松林1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 88-92.

PDF(840 KB)
PDF(840 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 88-92.
论文

一类含有分数阶导数的参数激励振动问题

  • 葛志新1 ,  陈咸奖2,  陈松林1
作者信息 +

A Class of Parametric Excitation Vibration Problem with  Fractional Derivative

  • GE Zhixin1,CHEN Xianjiang2,CHEN Songlin1
Author information +
文章历史 +

摘要

研究了一类具有分数阶导数阻尼的参数激励振动问题. 首先对含有由 Riemann-Liouville 定义的分数阶导数的Mathieu振动方程构造渐近解,利用多重尺度法,在激励参数取不同值的情况下,求得渐近解, 得到分数阶指数对解的影响.

Abstract

A class of parametric excitation vibration problems with fractional derivative damping was studied. First of all,the asymptotic solution of the Mathieu vibration equation of the fractional derivative defined by the Riemann-Liouville was structured. In the case of different values of excitation parameters,asymptotic solutions were obtained by the method of multiple scales. The influence of fractional order index on the asymptotic solution was obtained.

关键词

多重尺度 / 分数阶导数 / 参数激励 / 过渡曲线

Key words

multiple scales / fractional derivative / parametric excitation / transition curve

引用本文

导出引用
葛志新1,陈咸奖2, 陈松林1. 一类含有分数阶导数的参数激励振动问题[J]. 振动与冲击, 2017, 36(4): 88-92
GE Zhixin1,CHEN Xianjiang2,CHEN Songlin1. A Class of Parametric Excitation Vibration Problem with  Fractional Derivative[J]. Journal of Vibration and Shock, 2017, 36(4): 88-92

参考文献

[1] Nayfeh A. H. Introduction to perturbation techniques[M]. Shanghai: Shanghai Translation Publish- ing House, 1990
[2]   刘灿昌,岳书常,许英姿,等.  参数激励非线性振动时滞反馈最优化控制[J].  振动与冲击,2015,34(20):6-9
LIU Can-chang, YUE Shu-chang, XU Ying-zi, et al. Optimal control of parametric excitated nonlin- ear vibration system with delayed linear and nonlinear feedback controllers[J]. Journal of vibration and shock,2015,34(20):6-9
[3] R. H. Rand, S. M. Sah, M. K. Suchorsky. Fractional Mathieu equation[J]. Communications in Nonlinear and Science Numerical Simulation,2010, 15(11):3254-3262
[4] A. Y. T. LEUNG, ZHONGJIN GUO, H. X. YANG. Transition Curves and Bifurcations of a class of Fractional Mathieu -Type Equations [J]. International Journal of Bifurcation and Chaos, 2012, 22(11):1853-1853
[5] A Mesbahi,M Haeri,M Nazari, et al. Fractional delayed damped Mathieu equation[J]. International Journal of Control , 2015,    88(3):622-630(9)
[6] 陈林聪, 李海锋, 李钟慎,等.宽带噪声激励下含分数阶导数的Duffing-van del Pol 振子的稳态响应[J].中国科学: 物理学力学天文学,2013, 43 (5):670–677
Chen L C, Li H F, Li Z S, et al. Stationary response of Duffing-van del Pol oscillator with fractional derivative under wide-band noise excitations (in Chinese). Scientia Sinica Physica Mechanica & Astronomica, 2013, 43: 670–677
[7] 杨建华, 刘厚广, 程刚. 一类五次方振子系统的叉形分叉及振动共振研究[J]. 物理学报, 2013,62(18): 180503
Yang  Jian-Hua, Liu Hou-Guang Cheng Gang. The pitchfork bifurcation and vibrational  resonance in a quintic oscillator[J]. Acta Phys. Sin.,2013.62(18): 180503
[8] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、 外阻尼Dufng振子的振动共振[J]. 物理学报, 2014,63(1):010506
Zhang Lu, Xie Tian-Ting, Luo Mao-Kang.Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals[J]. Acta Phys. Sin. 2014,63(1): 0105
[9]  韦鹏, 申永军, 杨绍普. 分数阶van der Pol振子的超谐共振[J]. 物理学报, 2014, 63(1): 010503
Wei Peng, Shen Yong-Juny, Yang Shao-Pu. Super-harmonic resonance of fractional-order van  der Pol oscillator[J]. Acta Phys. Sin.,2014, 63(1): 010503
[10]   申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析[J]. 物理学报,  2012, 61(11):110505
Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear single degree-of-freedom oscillator  with  fractional-order  derivative[J].  Acta  Phys.  Sin.,  2012, 61(11):110505
[11] 申 永 军, 杨 绍 普, 邢 海 军. 含 分 数 阶 微 分 的 线 性 单 自 由 度 振 子 的 动 力 学 分 析(Ⅱ)[J]. 物 理 学    报,2012,61(15): 150503
Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun.Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative(Ⅱ)[J]. Acta Phys. Sin., 2012, 61(15):150503
[12]   莫嘉琪.  非线性分数阶微分方程的奇摄动[J].  应用数学学报,2006, 29(6):1086-1090
Mo J Q. Singular perturbation of nonlinear fractional differential equation[J]. Acta Mathematicae Applicatae  Sinica,2006, 29(6):1086-1090
[13]   葛志新,陈咸奖.  一类含有两参数的小迟滞方程的渐近解[J].  应用数学学报,2014,37(3):407-413  GE  Z X,
CHEN X J. The asymptotic solution of a class of small delay equations with Two Parameters[J].Acta Mathematicae Applicatae Sinica,2014,37(3):407-413
[14] 葛志新. 一类二次奇摄动Robin问题[J]. 工程数学学报, 2011, 28(2): 245-250
GE Z X.A Class of the quadratic singularly perturbed boundary value problems with the Robin condition[J]. Chinese Journal of Engineering Mathematics,2011, 28(2): 245-250
[15]   葛志新.  一类两参数奇异摄动拟线性微分方程组的边值问题渐近解[J].  工程数学学报, 2013,30(4):611-618
GE Z X. Asymptotic solutions about a class of the quasilinear system of differential equations with two parameters and boundary value conditions[J]. Chinese Journal of Engineering Mathematics, 2013, 30(4): 611–618

PDF(840 KB)

662

Accesses

0

Citation

Detail

段落导航
相关文章

/