基于子结构的有限元模型修正方法

翁顺1,左越1,朱宏平1,陈波2,赵会贤1,田炜1,颜永逸1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 99-104.

PDF(1523 KB)
PDF(1523 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (4) : 99-104.
论文

基于子结构的有限元模型修正方法

  • 翁顺1,左越1,朱宏平1,陈波2,赵会贤1,田炜1,颜永逸1
作者信息 +

Model updating based on a substructuring method

  • WENG Shun1,ZUO Yue1,ZHU Hongping1,CHEN Bo2,ZHAO Huixian1,TIAN Wei1,YAN Yongyi1
Author information +
文章历史 +

摘要

本文提出了一种基于子结构的有限元模型修正方法。该方法首先将整体结构有限元模型划分为多个子结构模型,求解独立子结构的主模态特征解和特征灵敏度;然后通过位移协调条件和能量方程,约束相邻独立子结构,得到整体结构的特征解和特征灵敏度;最后,以整体结构模态和结构试验模态的残差为目标函数,通过调整子结构单元参数,完成有限元模型修正。当结构局部参数发生变化,通过分析某一个或几个子结构即可求解整体结构特征解和特征灵敏度,而不需要分析其他未发生变化的子结构。由于子结构模型尺寸远小于整体结构,该方法能够极大地提高有限元模型修正方法的精度和效率。

Abstract

This paper proposes a substructure-based model updating method. The global structure was divided into independent manageable substructures,which were analyzed to calculate the substructural eigensolutions and eigensensitivity. Afterwards,the independent substructures were constrained to calculate the eigensolutions and eigensensitivity of the global structure. Finally,the eigensolutions were used for the objective function and the eigensensitivity was used to indicate the searching direction to achieve the model updating. When the local area of a structure was changed,only one or more substructures were analyzed whereas the other substructures were untouched. Since the substructures were much smaller than the global structure,the proposed method significantly improved the accuracy and efficiency of the model updating process. 

关键词

有限元模型修正 / 损伤识别 / 子结构;特征解 / 特征灵敏度;

Key words

model updating / substructure / damage identification / substructure / eigensolution / eigensensitivity

引用本文

导出引用
翁顺1,左越1,朱宏平1,陈波2,赵会贤1,田炜1,颜永逸1. 基于子结构的有限元模型修正方法[J]. 振动与冲击, 2017, 36(4): 99-104
WENG Shun1,ZUO Yue1,ZHU Hongping1,CHEN Bo2,ZHAO Huixian1,TIAN Wei1,YAN Yongyi1. Model updating based on a substructuring method[J]. Journal of Vibration and Shock, 2017, 36(4): 99-104

参考文献

[1] Mottershead JE, Friswell MI. Model updating in structural  dynamics: A survey. Journal of Sound and Vibration 1993, 67: 347-75.
[2] 朱宏平, 黄民水. 基于环境激励的桥梁结构动力有限元 模型修正研究. 华中科技大学学报, 2009年. 第26卷, 第1期: 1-11.
Zhu HP, Huang MS. Study on dynamic finite element model updating of bridge structures based on ambient excitation. Journal of Huazhong University of Science and Technology(Urban Science Edition), 2009, 26(1), 1-11.
[3] 方圣恩, 基于有限元模型修正的结构损伤识别方法研究. 中南大学, 博士论文, 2010.
Fang SE. Studies on structural damage detection by finite element model updating, Phd thesis, Southeast University, 2010.
[4] 姜东, 费庆国, 吴邵庆. 基于摄动法的不确定性有限元模型修正方法研究, 计算力学学报, 2014年, 31(4): 431-437.
Jiang D, Fei QG, Wu SQ. A study on stochastic finite element model updating based on perturbation approach Chinese Journal of Computational Mechanics, 2014, , 31(4): 431-437.
[5] 任伟新, 陈华斌, 基于响应面的桥梁有限元模型修正, 土木工程学报, 2008年12月, 41(12): 73-78.
Ren WX, Chen HN. Response-surface based on finite element model updating of bridge structures. China Civil Engineering Journal, 2008, 41(12): 73-78.
[6] 郭勤涛, 张令弥, 费庆国. 结构动力学有限元模型修正的 发展--模型确认[J].力学进展, 2006, 36(1): 36-42.
Guo QT, Zhang LM, Fei QG. From FE model updating to model validation: advances in modeling of dynamic structures, Advances in Mechanics, 2006, 36(1): 36-42.
[7] Brownjohn JMW, Moyo P, Omenzetter P, Lu Y. Assessment of highway bridge upgrading by dynamic testing and finite-element model updating. Journal of Bridge Engineering 2003. 8: 162-72.
[8] Jaishi B, Ren WX. Structural Finite Element Model UpdatingUsing Ambient Vibration Test Results. Journal of Structural Engineering 2005, 131: 617-28.
[9] Zhu HP, Mao L, Weng S. A sensitivity-based structural damage identification method with unknown input excitation using transmissibility concept. Journal of Sound and Vibration, 2014, 333: 7135-7150.
[10] Weng S, Zhu AZ, Zhu HP, et al. Dynamic condensation approach to the calculation of eigensensitivity, Computers and Structures, 2014, 132: 55-64.
[11] Weng S, Zhu HP, Xia Y, et al. Substructuring approach to the calculation of higher-order eigensensitivity. Computers and Structures, 2013, 117, pp: 23-33.
[12] Weng S, Zhu HP, Xia Y, et al. Damage detection using the eigenparameter decomposition of substructural flexibility matrix. Mechanical Systems and Signal Processing, 2013, 34, pp: 19-38.
[13] Weng S, Xia Y, Xu YL, et al. Improved substructuring method for eigensolutions of large-scale structures. Journal of Sound and Vibration 2009, 323: 718-36
[14] Choi KK, Kim NH. Structural Sensitivity Analysis and Optimization 1: Linear Systems. New York: Springer Science and Business Media, Inc, 2005.
[15] Fox RL, Kapoor MP. Rate of change of eigenvalues and eigenvectors. AIAA Journal 1968, 6: 2426-9.
[16] Nelson RB. Simplified calculation of eigenvector derivatives. AIAA Journal 1976, 14: 1201-5.
[17] Craig RR. Coupling of substructures for dynamic analysis:
 an overview, Proceedings of 41st AIAA/ASME/ASCE/ASC Structures, Structural Dynamics, and Materials Conference, Atlanta, GA, 3-8 April 2000, pp. 171-179.
[18] Kron G, Chapter 2 of Diakoptics, Macdonald and Co. London, England, 1963, 46-87.

PDF(1523 KB)

794

Accesses

0

Citation

Detail

段落导航
相关文章

/