闭孔泡沫铝的动态压缩性能试验研究

李忠献1,2,张茂轩1,师燕超1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 1-6.

PDF(1163 KB)
PDF(1163 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 1-6.
论文

闭孔泡沫铝的动态压缩性能试验研究

  • 李忠献1,2,张茂轩1,师燕超1,2
作者信息 +

Tests for  dynamic compressive performance of closed-cell aluminum foams

  • LI Zhongxian1,2,ZHANG Maoxuan1, SHI Yanchao1,2
Author information +
文章历史 +

摘要

为了研究闭孔泡沫铝动态压缩性能的应变率效应,采用改进的INSTRON高速动力加载系统,对不同应变率下闭孔泡沫铝试件进行动态压缩试验研究。首先利用正向试验和反向试验技术对不同厚度的闭孔泡沫铝试件在同一加载速率下的动态压缩性能进行了研究,得到了在一定速率下消除泡沫铝动态压缩试验中惯性效应的合理试件厚度。进一步开展了闭孔泡沫铝试件在不同加载速率下的高速压缩试验,研究了其动态压缩性能随应变率的变化规律。结果表明在高速压缩下,闭孔泡沫铝的应力-应变曲线与准静态条件相同,具有明显的弹性段、平台段及压实段的3阶段特征。闭孔泡沫铝的平台应力具有明显的应变率效应,而致密应变在不同的应变率下表现出了不同的变化趋势,初步解释为泡沫铝孔壁塑性变形机制的改变以及波动效应的相互影响。闭孔泡沫铝的吸能能力随应变率的增加而明显提升。

Abstract

To investigate the strain rate effect on dynamic compressive performance of closed-cell aluminum foam, the improved INSTRON High speed loading system was used to conduct dynamic compression tests of closed-cell aluminum foam specimens under different strain rate.Firstly, the forward and reverse test methods were adopted to study the dynamic compressive performance of closed-cell aluminum foam specimens with different thicknesses under the same loading velocity, and the specimen thickness to eliminate the inertia effect at a certain speed was obtained.A series of closed-cell aluminum foams were further tested under different loading rates to study the change law of their dynamic compression performances versus strain rate.The results showed that the dynamic stress-strain curve of closed-cell aluminum foam has three regions including an elastic region, a stress platform one and a compressive one, it is the same as that in the quasi-static case; platform stress of closed-cell aluminum foam has an obvious strain rate effect under high speed compressive loads, and its densification strain under different strain rates has different varying trends; this phenomenon is explained as the interaction effects between the change of plastic deformation mechanism of aluminum foam cell wall and fluctuations effect; the energy absorption capability of closed-cell aluminum foam is improved significantly with in crease in strain rate.

关键词

闭孔泡沫铝 / 动态压缩 / 惯性效应 / 应变率效应 / 平台应力 / 致密应变 / 吸能能力

Key words

closed-cell aluminum foam / dynamic compression / inertia effect / strain rate effect / platform stress / densification strain / energy absorption capability

引用本文

导出引用
李忠献1,2,张茂轩1,师燕超1,2. 闭孔泡沫铝的动态压缩性能试验研究[J]. 振动与冲击, 2017, 36(5): 1-6
LI Zhongxian1,2,ZHANG Maoxuan1, SHI Yanchao1,2. Tests for  dynamic compressive performance of closed-cell aluminum foams[J]. Journal of Vibration and Shock, 2017, 36(5): 1-6

参考文献

[1] Banhart J. Aluminium foams for lighter vehicles [J]. International Journal of Vehicle Design, 2005, 37(2-3): 114-125.
[2] Ashby M F, Evans A, Fleck N A, et al. Metal Foams: A Design Guide [M]. Amsterdam: Elsevier, 2000.
[3] 康建功,石少卿. 泡沫铝衰减冲击波峰值压力的理论及数值分析[J]. 振动与冲击,2010,29(5):199-202.
Kang Jiangong, Shi Shaoqing. Theoretical and numerical analysis for a cladding aluminum foam sandwich panel attenuating blasting wave pressure [J]. Journal of Vibration and Shock, 2010, 29(5): 199-202.
[4] Hanssen A G, Enstoc L, Langseth M. Close-range blast loading of aluminium foam panels [J]. International Journal of Impact Engineering, 2002, 27(6): 593-618.
[5] 任新见,李广新,张胜民. 泡沫铝夹心排爆罐抗爆性能试验研究[J]. 振动与冲击,2011,30(5):213-217.
Ren Xinjian, Li Guangxin, Zhang Shengmin. Antidetonation property tests for explosion-proof pots
made of sandwich structure with aluminium foam [J]. Journal of Vibration and Shock, 2011, 30(5): 213-217.
[6] 刘新让,田晓耕,卢天健,等. 泡沫铝夹芯圆筒抗爆性能研究[J]. 振动与冲击,2012,31(23):166-173.
Liu Xinrang, Tian Xiaogeng, Lu Tianjian, et al. Blast-resistance behaviors of sandwich-walled hollow cylinders with aluminum foam cores [J]. Journal of Vibration and Shock, 2012, 31(23): 166-173.
[7] Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams [J]. International Journal of Impact Engineering, 2000, 24(3): 277-298.
[8] Peroni M, Solomos G, Pizzinato V. Impact behaviour testing of aluminium foam [J]. International Journal of Impact Engineering, 2013, 53: 74-83.
[9] 石少卿,康建功,隋顺彬. 闭孔泡沫铝材料静动力性能试验[J]. 稀有金属材料与工程,2011,40(2):150-154.
Shi Shaoqing, Kang Jiangong, Sui Shunbin. Experimental study of quasi-static and dynamic compressive property of close-cell aluminum foam [J]. Rare Metal Materials and Engineering, 2011, 40(2): 150-154.
[10] 李志武,许金余,范飞林,等. 采用改进的SHPB方法对闭孔泡沫铝的动态压缩性能的研究[J]. 材料热处理技术,2011,40(6):82-85.
Li Zhiwu, Xu Jinyu, Fan Feilin, et al. Study on dynamic compressive properties of closed-cell foamed aluminum using improved SHPB method [J]. Material and Heat Treatment, 2011, 40(6): 82-85.
[11] Field J E, Walley S M, Proud W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725-775.
[12] Su X Y, Yu T X, Reid S R. Inertia-sensitive impact energy-absorbing structures part I: Effects of inertia and elasticity [J]. International Journal of Impact Engineering, 1995, 16(4): 651-672.
[13] Su X Y, Yu T X, Reid S R. Inertia-sensitive impact energy-absorbing structures part II: Effect of strain rate [J]. International Journal of Impact Engineering, 1995, 16(4): 673-689.
[14] Chen W, Lu F, Frew D J, et al. Dynamic compression testing of soft materials [J]. Journal of Applied Mechanics, 2002, 69(3): 214-223.
[15] Chen W, Zhang B, Forrestal M J. A split Hopkinson bar technique for low impedance materials [J]. Experimental Mechanics, 1999, 39(2): 81-85.
[16] Idris M I, Vodenitcharova T, Hoffman M. Mechanical behaviour and energy absorption of closed-cell aluminium foam panels in uniaxial compression [J]. Materials Science and Engineering: A, 2009, 517(1): 37-45.
[17] Li Q M, Magkiriadis I, Harrigan J J. Compressive strain at the onset of the densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371-392.
[18] Irausquín I, Pérez-Castellanos J L, Miranda V, et al. Evaluation of the effect of the strain rate on the compressive response of a closed-cell aluminium foam using the split Hopkinson pressure bar test [J]. Materials and Design, 2013, 47: 698-705.
[19] 刘耀东,虞吉林,郑志军. 惯性对多孔金属材料动态力学行为的影响[J]. 高压物理学报,2008,22(2):118-124.
Liu Yaodong, Yu Jilin, Zheng Zhijun. Effect of inertia on
the dynamic behavior of cellular metal [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 118-124.
[20] Elnasri I, Pattofatto S, Zhao H, et al. Shock enhancement of cellular structures under impact loading: Part I experiments [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652-2671.
[21] 王鹏飞,胡时胜. 轴向尺寸对泡沫铝动静态力学性能的影响[J]. 爆炸与冲击,2012,32(4):393-398.
Wang Pengfei, Hu Shisheng. Mechanical properties of foam aluminum with different sizes [J]. Explosion and Shock Waves, 2012, 32(4): 393-398.
[22] Shen J, Lu G, Ruan D. Compressive behaviour of closed-cell aluminium foams at high strain rates [J]. Composites Part B: Engineering, 2010, 41(8): 678-685.

PDF(1163 KB)

Accesses

Citation

Detail

段落导航
相关文章

/