共振频率可调式非线性压电振动能量收集器

吴义鹏, 季宏丽,裘进浩,张浩

振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 12-16.

PDF(1588 KB)
PDF(1588 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 12-16.
论文

共振频率可调式非线性压电振动能量收集器

  • 吴义鹏, 季宏丽,裘进浩,张浩
作者信息 +

A nonlinear piezoelectric vibration energy harvesting device with tunable resonance frequencies

  • WU Yipeng,JI Hongli,QIU Jinhao,ZHANG Hao
Author information +
文章历史 +

摘要

振动能量回收技术能够将环境中的机械振动能转换成电能,进而为微功耗装置供电,具有良好的应用前景。本文设计了一种利用压电材料的新型振动能量收集器,该机电耦合结构由一对非对称压电悬臂梁组成,悬臂梁末端固定有永磁体,利用永磁体产生的非线性力,实现了悬臂梁共振频率与外界激振频率的匹配调节。论文提出了该结构的理论模型,借助Matlab/Simulink数值分析软件对理论模型进行了仿真分析,并通过实验进行了验证。实验结果表明外界激励加速度幅值为3m/s2的时,结构即能实现较大频带范围内的频率匹配调节,频带范围不低于6.5Hz,最大回收功率不低于2mW。

Abstract

Vibration energy harvesting technology can convert ambient mechanical vibration energy into electrical energy and then powers micro-power consumption devices,it is an attractive technology for practical application.Here,a novel vibration energy harvesting device was designed based on piezoelectric materials,its electro-mechanical coupled structure was composed of a pair of asymmetric cantilevers,their free ends were glued with magnets.Fortunately,a nonlinear magnetic force caused by magnets was adopted to realize the matching adjustment between the resonance frequency of the cantilever and external excitation frequency.The theoretical model of the device’s structure was proposed.The model was simulated with MATLAB/Simulinke and verified with tests.The results showed that when the external excitation acceleration amplitude is 3 m/s2,the device can be used to realize the frequency matching adjustment within a wider frequency band range,the frequency band range is higher than 6.5 Hz and the maximum harvesting power is higher than 2 mW.

关键词

能量回收 / 频率匹配 / 压电 / 非线性

Key words

energy harvesting / frequency tuning / piezoelectric / nonlinear

引用本文

导出引用
吴义鹏, 季宏丽,裘进浩,张浩. 共振频率可调式非线性压电振动能量收集器[J]. 振动与冲击, 2017, 36(5): 12-16
WU Yipeng,JI Hongli,QIU Jinhao,ZHANG Hao. A nonlinear piezoelectric vibration energy harvesting device with tunable resonance frequencies[J]. Journal of Vibration and Shock, 2017, 36(5): 12-16

参考文献

[1] Beeby S P, Tudor M J and White N M. Energy harvesting vibration sources for microsystems applications [J]. Measurement science and technology, 2006, 17: R175-R195.
[2] 刘祥建,陈仁文. 压电振动能量收集装置研究现状及发展趋势[J]. 振动与冲击,2012,31(6):169-176.
Liu X and Chen R. Current situation and developing trend of piezoelectric vibration energy harvesters [J]. Jouranl of vibration and shock, 2012, 31(6): 169-176.
[3] Steven R A and Henry A S. A review of power harvesting using piezoelectric materials (2003-2006) [J]. Smart materials and structures, 2007, 16(3): R1-R21.
[4] Tang L, Yang Y and Soh C K. Broadband vibration energy harvesting techniques, in Advances in energy harvesting methods [M], Springer New York, 2013: 17-61.
[5] 曾平,刘艳涛,吴博达,等. 一种新型压电式无线发射装置[J]. 吉林大学学报工学版,2006,36(S2): 78-82.
Zeng P, Liu Y, Wu B, et al. A novel wireless electropult powered by piezoelectricity [J]. Journal of Jilin University: Engineering and technology edition. 2006, 36(S2): 78-82.
[6] 胡洪平,高发荣,薛欢,等. 低频螺旋状压电俘能器结构性能分析[J]. 固体力学学报,2007,28(1): 87-92.
Hu H, Gao F, Xue H et al. Analysis on structure and performance of a low frequency piezoelectric power harvester using a spiral-shaped bimorph [J]. Acta mechanica solida sinica, 2007, 28(1): 87-92.
[7] 阚君武,徐海龙,王淑云,等. 多振子串联压电俘能器性能分析与测试[J]. 振动与冲击,2013,32(22):79-83.
Kan J, Xu H, Wang S, et al. Performance analysis and test of an energy harvester with serial-connected piezodiscs [J]. Jouranl of vibration and shock, 2013, 32(22): 79-83.
[8] Eichhorn C, Goldschmidtboeing F, Woias P. A frequency tunable piezoelectric energy converter based on a cantilever beam [C]. Proceedings of PowerMEMS, 2008, 9(12): 309-312.
[9] Pillatsch P, Miller L M, Halvorsen E, et al. Self-tuning behavior of a clamped- clamped beam with sliding proof mass for broadband energy harvesting [C]. Journal of Physics: Conference Series. IOP Publishing, 2013, 476(1): 012068.
[10] Roundy S, Zhang Y. Toward self-tuning adaptive vibration-based microgenerators [C]. Smart Materials, Nano-, and Micro-Smart Systems. International Society for Optics and Photonics, 2005: 373-384.
[11] 马华安,刘景全,唐刚,等. 一种宽频带磁式压电振动能量采集器[J]. 传感器与微系统,2011,30(4):66-68.
Ma H, Liu J, Tang G, et al. A magnetic structure for broadband piezoelectric vibration energy harvester [J]. Transducer and mocrosystem technologies, 2011, 30(4): 66-68.
[12] Yung K W, Landecker P B, Villani D D. An analytic solution for the force between two magnetic dipoles [J]. Physical separation in science & engineering, 1998, 9(1): 39-52.
[13] Lin J T, Lee B, Alphenaar B. The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency [J]. Smart materials & structures, 2010, 19(4): 126-134.
[14] Wu Y, Badel A, Formosa F, et al. Nonlinear vibration energy harvesting device integrating mechanical stoppers used as synchronous mechanical switches [J]. Journal of intelligent material systems and structures, 2014, 25(14): 1658-1663.
[15] Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(4): 584-595.

PDF(1588 KB)

Accesses

Citation

Detail

段落导航
相关文章

/