在风场作用中,针对桥梁结构与风荷载耦合而表现出非自伴随动力系统的现象,本文提出了仅具有5个独立控制参数的桥梁节段主动控制模型来模拟含有8个颤振气动导数的节段风洞试验模型。该模型由刚体所受的分布力系可等效为集中力系原则出发,利用PID反馈控制技术所构造,其在数学力学模型方面与风洞试验模型完全一致。通过几何变换,干风洞实验测量的线位移信号可转换为角位移信号。同时,运用MIMO分析技术可简单而精确获取系统完备的频响函数矩阵,再采用基于复模态理论中左右特征向量的辨识算法识别控制参数。通过数值仿真,验证了主动控制模型的合理性,同时也显示了该模型在桥梁风振研究中的应用价值和推广意义。
Abstract
When a bridge stays in a windy environment,the aerodynamic force makes it act as a non-classic system.For studying this,a five-parameter bridge segment model based on active control was proposed here to simalate a bridge section wind tunnel test model with eight flutter derivatives.According to the principle of equivalent force system,the proposed model constructed with the signal feedback technique coincided with the wind tunnel test model in the aspects of mathematics and mechanics.With a geometric transformation,the linear displacement signals measured in the wind tannel test could be transformed into the angular displacement signals.Meanwhile,the system’s FRF matrix was obtained with the MIMO analysis technique simply and accurately.Then the control parameters were identified with the left-right eigenvectors identification algorithm based on the complex modal theory.Through simulations,the rationality of the proposed model was validated.The results revealed the application prospect of the proposed model in bridge wind-induced vibration study.
关键词
桥梁风振 /
主动控制 /
模态分析 /
参数辨识
{{custom_keyword}} /
Key words
wind-induced vibration /
active control /
modal analysis /
parametric identification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Scanlan R H, Tomo J J. Air foil and bridge deck flutter derivatives[J]. Journal of Soil Mechanics & Foundations Div, 1971, 97(6): 1717-1733.
[2] Sarkar P P. New identification methods applied to the response of flexible bridges to wind. Ph.D Thesis, The Johns Hopkins University, Baltimore, Maryland, USA, 1992.
[3] Gu M, Zhang R, Xiang H. Identification of flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(2): 151-162.
[4] Gu M, Zhang R, Xiang H. Parametric study on flutter derivatives of bridge decks[J]. Engineering Structures, 2001, 23(12): 1607-1613.
[5] Brownjohn J M W, Jakobsenb J B. Strategies for aeroelastic parameter identification from bridge deck free vibration data[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(13): 1113-1136.
[6] Chen A R, He X F, Xiang H F. Identification of 18 flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12): 2007-2022.
[7] Chowdhury A G, Sarkar P P. A new technique for identification of eighteen flutter derivatives using a three-degree-of-freedom section model[J]. Engineering Structures, 2003, 25(14): 1763-1772.
[8] 许福友, 陈艾荣, 张哲, 王达磊. 确定桥梁模型颤振临界风速的实用方法[J]. 振动与冲击, 2008, 27(12): 97-100.
Xu F Y, Chen A R, Zhang Z, Wang D L. Practical Technique for Determining Critical Flutter Wind Speed of Bridge Model[J]. Journal of Vibration and Shock, 2008, 27(12): 97-100.
[9] 黄方林, 陈政清. 桥梁颤振气动导数识别的迭代法[J]. 振动与冲击, 2002, (2): 64-67.
Huang F L, Chen Z Q. Iterative Method for Identification of Flutter Derivatives of a Sectional Bridge Model[J]. Journal of Vibration and Shock, 2002, 21(2): 64-67.
[10] 周锐,杨詠昕,葛耀君,钱国伟. 平行双幅桥梁的颤振控制试验研究[J]. 振动与冲击, 2014,33(12): 126-132.
Zhou R, Yang Y X, Ge Y J, Qian G W. Tests for flutter control of a twin-separate bridge[J]. Journal of Vibration and Shock, 2014,33(12): 126-132.
[11] 丁泉顺,王景,朱乐东. 桥梁断面颤振导数识别的耦合自由振动方法[J]. 振动与冲击, 2012, 31(24):5-8.
Ding Q S, Wang J, Zhu L D. Coupled free vibration technique for identifying flutter derivatives of bridge decks[J]. Journal of Vibration and Shock, 2012,31(24): 5-8.
[12] 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11): 1947-1957.
Xu Y T, Wu Z G, Yang C. Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica of Astronautica Sinica, 2012, 33(11):1947-1957.
[13] Zhang X X, Chen L F, Song H W. Self-contained eigenvector algorithm applied to the identification of aerodynamic derivatives of bridge model[J]. Science China Technological Sciences, 2011, 54(5): 1134-1140.
[14] Cao B, Sarkar P P. Identification of Rational Functions using two-degree-of-freedom model by forced vibration method[J]. Engineering Structures, 2012, 43: 21-30.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}