高速旋转柔性梁刚柔耦合动力学分析

周兰伟1 陈国平2 孙东阳3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 142-146.

PDF(803 KB)
PDF(803 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 142-146.
论文

高速旋转柔性梁刚柔耦合动力学分析

  • 周兰伟1 陈国平2 孙东阳3
作者信息 +

Rigid-flexible coupled dynamic analysis for a high-speed spinning flexible beam

  • ZHOU Lanwei1,CHEN Guoping2,SUN Dongyang3
Author information +
文章历史 +

摘要

基于一次近似理论对绕纵轴高速旋转的柔性梁进行动力学分析,考虑了轴向与横向振动之间的耦合作用以及由偏心产生的离心力作用;采用Hamilton原理导出了旋转柔性梁在恒定转速下动力学方程,并采用假设模态法对所得动力学方程进行分析,得出恒定转速下柔性梁一次近似模型与零次近似模型动力学响应。二者对比表明柔性梁在低速旋转时刚柔耦合项影响较小,可以忽略,可采用零次近似模型;而在高速旋转时刚柔耦合项影响较大,不可以忽略,应采用一次近似模型以得到较为精确的结果。

Abstract

Here,rigid-flexible coupled dynamic properties of a high-speed spinning flexible beam around its own longitudinal axis were studied.Using the first-order approximation model,the coupling effect of  axial vibration and transverse one of the beam was considered.Besides,the centrifugal forces caused by eccentricity were also considered.The beam’s governing coupled partial differential equations of motion under a certain spinning speed were derived using Hamilton’s principle,and the assumed mode method was used for discretization.For different spinning,speeds,the transverse vibration response of the beam’s zero-order approximate model was compared with that of its first-order approximation model.The simulation results indicated that the zero-order approximate model is valid for the dynamic description of the flexible beam spinning at a lower speed since the effect of the rigid-flexible coupled terms is small and can be neglected; but when the beam spins at a higher speed,the first-order approximate  model can account for the larger effect of the rigid-flexible coupled terms to obtain the beam’s more accurate dynamic response.

关键词

高速;旋转柔性梁;一次近似;Hamilton原理 / 假设模态法

Key words

high-speed / spinning flexible beam / first-order approximation / Hamilton principle / assumed mode method

引用本文

导出引用
周兰伟1 陈国平2 孙东阳3. 高速旋转柔性梁刚柔耦合动力学分析[J]. 振动与冲击, 2017, 36(5): 142-146
ZHOU Lanwei1,CHEN Guoping2,SUN Dongyang3. Rigid-flexible coupled dynamic analysis for a high-speed spinning flexible beam[J]. Journal of Vibration and Shock, 2017, 36(5): 142-146

参考文献

[1] 朱怀亮. 高速旋转飞行器弯—扭—轴向变形耦合与拍振[J]. 振动与冲击. 2002, 21(2): 32-35.
 Zhu Huailiang.Dynamic analysis of sinning flexible missiles with coupled lateral_torsional_axial vibrations [J]. Journal of Vibration and Shock. 2002, 21(2): 32-35. 
[2] Dimentberg F M. Flexural Vibrations of Spinning Shafts[Z]. Butterworths Press, London, 1961.
[3] Sheu G J, Yang S M. Dynamic analysis of a spin-ning Rayleigh beam[J]. International Journal of Me-chanical Sciences. 2005, 47(2): 157-169.
[4] Sloetjes P J, de Boer A. Vibration reduction and power generation with piezoceramic sheets mounted to a flexible shaft[J]. Journal of Intelligent Material Systems and Structures. 2008, 19(1): 25-34.
[5] Mamandi A, Kargarnovin M H. Nonlinear dynamic analysis of an axially loaded rotating Timoshenko beam with extensional condition included subjected to general type of force moving along the beam length[J]. Journal of Vibration and Control. 2012.
[6] Qian X, Du X. Dynamic characteristics of spinning Rayleigh beams[J]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics. 2011, 43(3): 635-640.
[7] Frank Pai P, Qian X, Du X. Modeling and dynamic characteristics of spinning Rayleigh beams[J]. Interna-tional Journal of Mechanical Sciences. 2013(0).
[8] 董兴建,孟光,蔡国平等. 旋转柔性梁的动力学建模及分析[J]. 振动工程学报. 2006, 19(4): 488-493.
Dong Xingjian, Meng Guang, Cai Guoping et al. Dynamic model ling and analysis of a rotating flexible beam[J]. Journal of Vibration Engineering. 2006, 19(4): 488-493.
[9] Yoo H H, Ryan R R, Scott R A. Dynamics of flexi-ble beams undergoing overall motions[J]. Journal of Sound and Vibration. 1995, 181(2): 261-278.
[10] Lee H P. Dynamic response of a rotating Ti-moshenko shaft subject to axial forces and moving loads[J]. Journal of Sound and Vibration. 1995, 181(1): 169-177.
[11] Huajiang O, Minjie W. A dynamic model for a ro-tating beam subjected to axially moving forces[J]. Jour-nal of Sound and Vibration. 2007, 308(3-5):

PDF(803 KB)

Accesses

Citation

Detail

段落导航
相关文章

/