近断层地震动作用下大跨度曲线刚构桥台阵试验研究

李晰,贾宏宇,李倩

振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 199-207.

PDF(3792 KB)
PDF(3792 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 199-207.
论文

近断层地震动作用下大跨度曲线刚构桥台阵试验研究

  • 李晰,贾宏宇,李倩
作者信息 +

Shaking table tests for a long-span curved rigid bridge under near-fault ground motions

  • LI Xi,JIA Hongyu,LI Qian
Author information +
文章历史 +

摘要

为了研究近断层地震动对大跨度曲线刚构桥抗震性能的影响,以某一大跨度曲线刚构桥为原型,设计制作1/40缩尺比例模型,选取同一地震中的近断层地震动记录和远场地震动记录,利用多子台积木式模拟振动台台阵系统,完成了横向、纵向、横向+纵向一致输入及行波输入的对比试验。研究结果表明:近断层地震动中所含的速度脉冲会对曲线刚构桥的动力响应产生显著影响,并且行波效应会进一步提升其对结构响应的放大作用;近断层效应的放大作用对刚度较大的结构或者结构某一个方向更为明显,而行波效应对结构的影响主要取决于由多点激励所激发的高阶反对称模态;与直线桥相比较,曲率半径会增大曲线梁桥的水平刚度,从而使近断层效应和行波效应对曲线桥的动力响应产生更不利的影响。因此,在靠近断层的区域遭受同样的地震作用,曲线梁桥将产生更为严重的破坏,建议在抗震设计中应特别注意处于断层附近的曲线桥结构。

Abstract

To study the effects of near-fault ground motions on a long-span curved rigid bridge,an actual curved rigid bridge based on a scale of  1/40 model was employed to conduct shaking table tests.The typical near-fault and far-field ground motions recorded under the same earthquake were selected as the ground motion input,and then comparative tests on a multi-shaking table array system were carried out.During tests,the structure was subjected to synchronous and traveling wave excitations taken as longitudinal and transverse inputs,and the combination of transverse and longitudinal inputs,respectively.The results showed that the velocity pulse contained in near-fault ground motions has a significant influence on the dynamic response of the curved rigid bridge and the structural response amplification effect can be further elevated by traveling wave effect; near-fault effect is more obvious for the structure with a larger stiffness or a certain direction of the structure,whereas the influence of traveling wave effect on the structure is dependent primarily upon higher order asymmetric modes induced by mult-point excitations; compared with a straight line bridge,both near-fault effect and traveling wave effect cause  more harmful influence on the dynamic response of the curved bridge due to a larger stiffness in horizontal direction caused by curvature radius; therefore,the curved bridge may be damaged more seriously than a straight bridges may under the same earthquake in near-fault zone.It was suggested that special attentions should be received for a curved rigid bridge close to fault zones.

关键词

近断层地震动 / 曲线刚构桥 / 振动台试验 / 动力响应

Key words

near-fault ground motions / curved rigid bridge / shaking table test / dynamic response

引用本文

导出引用
李晰,贾宏宇,李倩. 近断层地震动作用下大跨度曲线刚构桥台阵试验研究[J]. 振动与冲击, 2017, 36(5): 199-207
LI Xi,JIA Hongyu,LI Qian. Shaking table tests for a long-span curved rigid bridge under near-fault ground motions[J]. Journal of Vibration and Shock, 2017, 36(5): 199-207

参考文献

 [1] 王辉,刘杰,申旭辉,等. 断层分布及几何形态对川西及邻区应变分配的影响[J]. 中国科学:地球科学. 2010(04): 458-472.
 [2] Han Q, Du X, Liu J, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration. 2009, 8(2): 263-273.
 [3] 刘启方,袁一凡,金星,等. 近断层地震动的基本特征[J]. 地震工程与工程振动. 2006(01): 1-10.
 [4] Housner G W, Hudson D E. The Port Hueneme earthquake of March 18, 1957[J]. Bulletin of the Seismological Society of America. 1958, 48: 163-168.
 [5] Bertero V V, Mahin S A, Herrera R A. A seismic design implications of near-fault san-fernando earthquake records[J]. Earthquake Engineering & Structural Dynamics. 1978, 6(1): 31-42.
 [6] Krawinkler H, Alavi B, Zareian F. Impact of near-fault pulses on engineering design[M]. NATO Science Series IV-Earth and Environmental Sciences, Gulkan P, Anderson J G, 2005: 58, 83-106.
 [7] Hall J F, Heaton T H, Halling M W, et al. Near-source ground motion and its effects on flexible buildings[J]. Erathquake Spectra. 1995, 11(4): 569-605.
 [8] Bray J D, Rodriguez-Marek A. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics and Earthquake Engineering. 2004, 24(11): 815-828.
 [9] Chopra A K, Chintanapakdee C. Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions[J]. Earthquake Engineering & Structural Dynamics. 2001, 30(12): 1769-1789.
[10] Mollaioli F, Bruno S, Decanini L D, et al. Characterization of the dynamic response of structures to damaging pulse-type near-fault ground motions[J]. Meccanica. 2006, 41(1): 23-46.
[11] Jalali R S, Bahari Jokandan M, Trifunac M D. Earthquake response of a three-span, simply supported bridge to near-field pulse and permanent-displacement step[J]. Soil Dynamics and Earthquake Engineering. 2012, 43: 380-397.
[12] 李宁,李忠献,李杨. 近断层地震动作用下桥梁结构易损性曲面分析[Z]. 哈尔滨: 2014307-312.
[13] 翟长海,张林春,李爽,等. 近场地震动对大跨刚构桥影响的分析[J]. 防灾减灾工程学报. 2010(S1): 143-147.
[14] Ismail M, Casas J R, Rodellar J. Near-fault isolation of cable-stayed bridges using RNC isolator[J]. Engineering Structures. 2013, 56: 327-342.
[15] Karalar M, Padgett J E, Dicleli M. Parametric analysis of optimum isolator properties for bridges susceptible to near-fault ground motions[J]. Engineering Structures. 2012, 40: 276-287.
[16] 石岩,王东升,孙治国. 近断层地震动下减隔震桥梁地震反应分析[J]. 桥梁建设. 2014, 44(3): 19-24.
[17] 王东升,冯启民,翟桐. 近断层地震动作用下钢筋混凝土桥墩的抗震性能[J]. 地震工程与工程振动. 2003, 23(1): 95-102.
[18] Chouw N, Hao H. Significance of SSI and nonuniform near-fault ground motions in bridge response I: Effect on response with conventional expansion joint[J]. Engineering Structures. 2008, 30(1): 141-153.
[19] Goel R K, Chopra A K. Role of shear keys in seismic behavior of bridges crossing fault-rupture zones[J]. Journal of Bridge Engineering. 2008, 13(4): 398-408.
[20] Phan V, Saiidi M S, Anderson J, et al. Near-fault ground motion effects on reinforced concrete bridge columns[J]. Journal of Structure Engineering. 2007, 133(7): 982-989.
[21] Saiidi M S, Vosooghi A, Choi H, et al. Shake table studies and analysis of a Two-Span RC bridge model subjected to a fault rupture[J]. Journal of Bridge Engineering. 2014, 19(A40140038SI).
[22] 王天稳. 土木工程结构试验[M]. 武汉: 武汉理工大学出版社, 2006.
[23] PEER. Technical report for the PEER ground motion database web application[R]. Pacific Earthquake Engineering Research Center, 2010.
[24] Baker J W. Quantitative classification of Near-Fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America. 2007, 97(5): 1486-1501.
[25] Mayes R L, Shaw A. The effects of near fault ground motions on bridge columns[C]. Burlingame, California: 1997.
[26] Liao W, Chin-Hsiung, Wan L S. Dynamic responses of bridges subjected to near fault ground motions[J]. Journal of the Chinese Institute of Engineers. 2000, 23(4): 455-464.
[27] Li X, Zhang D, Yan W, et al. Shake-Table test for a typical curved bridge: Wave passage and local site effects[J]. Journal of Bridge Engineering. 2015, 20(040140612).
[28] Tzanetos N, Elnashai A S, Hamdan F H, et al. Inelastic dynamic response of RC bridges subjected to spatial non-synchronous earthquake motion[J]. Advances in Structural Engineering. 2000, 3(3): 191-213.
[29] Monti G, Nuti C, Pinto P E. Nonlinear response of bridges under multisupport excitation[J]. Journal of Structural Engineering. 1996, 122(10): 1147-1159.

PDF(3792 KB)

Accesses

Citation

Detail

段落导航
相关文章

/