核电站特种气密防火门在风致飞射物冲击作用下安全性能研究

张文娜,钱江

振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 221-226.

PDF(2083 KB)
PDF(2083 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 221-226.
论文

核电站特种气密防火门在风致飞射物冲击作用下安全性能研究

  • 张文娜,钱江
作者信息 +

Safety performance of a special airtight anti-fire door for nuclear power station subjected to windborne debris impact

  • ZHANG Wenna,QIAN Jiang
Author information +
文章历史 +

摘要

采用LS-DYNA程序分析研究了某型核电站气密防火门在龙卷风及其飞射物冲击荷载联合作用下的动力响应。计算给出了气密防火门在F4级龙卷风及风致飞射物作用下的冲击力曲线、结构变形和耗能情况,分析了冲击过程的能量耗散机制,考察了冲击位置对防火门响应性态的影响,指出了门体抗飞射物冲击设计和安全检验的关键问题,发现飞射物撞击位置不同对防火门的耗能机制和冲击力曲线有一定的影响。

Abstract

Dynamic response analysis of a special airtight anti-fire door for nuclear power plant subjected to the combined action of tornado and windborne debris impact was conducted by using the software LS-DYNA.Impact curves,structural deformation and energy dissipation of the door under F4 rank tornado and its windborne debris impact were simulated.Energy dissipation mechanism in impact process was analyzed.Thereafter,a parametric study was performed to investigate the effects of impact locations on the safety performance of the door.The key problems in windborne debris impact resistant design and safety inspection of the door were pointed out.It was shown that the energy dissipation mechanism and the impact curves are influenced by impact locations of windborne debris to a certain extent.

关键词

气密防火门 / 龙卷风 / 风致飞射物 / 安全性能

Key words

airtight anti-fire door / tornado / windborne debris / safety performance

引用本文

导出引用
张文娜,钱江. 核电站特种气密防火门在风致飞射物冲击作用下安全性能研究[J]. 振动与冲击, 2017, 36(5): 221-226
ZHANG Wenna,QIAN Jiang. Safety performance of a special airtight anti-fire door for nuclear power station subjected to windborne debris impact[J]. Journal of Vibration and Shock, 2017, 36(5): 221-226

参考文献

[1] 陈艾荣,刘志文,周志勇. 大跨径斜拉桥在龙卷风作用下的响应分析[J]. 同济大学学报(自然科学版). 2005(05): 569-574.
[2] 白俊峰,鞠彦忠,曾聪. 龙卷风作用下空间桁架的受力分析[J]. 东北电力大学学报. 2011(Z1): 46-51.
[3] 汤卓,张源,吕令毅. 龙卷风风场模型及风荷载研究[J]. 建筑结构学报. 2012(03): 104-110.
[4] 唐飞燕,汤卓,吕令毅. 龙卷风场中沙粒对结构冲击作用的研究[J]. 工程建设. 2013(03): 19-23.
[5] Shetty M S, Dharani L R, Wei J, et al. Failure probability of laminated architectural glazing due to combined loading of wind and debris impact[J]. Engineering Failure Analysis. 2014, 36(0): 226-242.
[6] Shetty M S, Dharani L R, Stutts D S. Analysis of Damage in Laminated Architectural Glazing Subjected to Wind Loading and Windborne Debris Impact[J]. Buildings. 2013.
[7] Shetty M S, Dharani L R, Stutts D S. Analysis of Laminated Architectural Glazing Subjected to Wind Load and Windborne Debris Impact[J]. ISRN Civil Engineering. 2012, 2012: 1-9.
[8] Zhou H, Dhiradhamvit K, Attard T L. Tornado-borne debris impact performance of an innovative storm safe room system protected by a carbon fiber reinforced hybrid polymeric-matrix composite[J]. Engineering Structures. 2014, 59(0): 308-319.
[9] Li J, Wang S, Johnson W. Pipe/duct system design for tornado missile impact loads[J]. Nuclear Engineering and Design. 2014, 269(0): 217-221.
[10] 中华人民共和国核工业标准. EJ420-89 三十万千瓦压水堆核电厂安全重要土建结构抗龙卷风设计规定标准[S]. 1989.
[11] RG1.076 Design-basis Tornado and Tornado Missiles for Nuclear Power Plants[S]. 2007.
[12] Stevens D J, Puryear J M H, Smith N, et al. Effects of Close-in Charges on Pipeline Components[J]. American Society of Civil Engineers(ASCE). 2012.
 

PDF(2083 KB)

Accesses

Citation

Detail

段落导航
相关文章

/