用圆孔内单边裂纹平台巴西圆盘和实验-数值-解析法确定砂岩的动态起裂和扩展韧度

周妍1,2,张财贵1,王启智1,3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 37-47.

PDF(2693 KB)
PDF(2693 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 37-47.
论文

用圆孔内单边裂纹平台巴西圆盘和实验-数值-解析法确定砂岩的动态起裂和扩展韧度

  • 周妍1,2,张财贵1,王启智1,3
作者信息 +

Determination of dynamic initiation toughness and dynamic propagation toughness of sandstone

  • ZHOU Yan1,2,ZHANG Caigui1,WANG Qizhi1,3
Author information +
文章历史 +

摘要

在I型(张开型)动态断裂实验中,利用大直径100 mm)分离式霍普金森压杆径向冲击圆孔内单边裂纹平台巴西圆盘试样。考虑了材料惯性效应和裂纹扩展速度对动态应力强度因子的影响,用实验-数值-解析法确定了高加载率和高裂纹扩展速度情况下,砂岩的动态起裂韧度和动态扩展韧度。首先由动态实验获取试样的动荷载历程,采用裂纹扩展计(crack propagation gauge-CPG)测定试样断裂时刻和裂纹扩展速度,获得裂纹扩展速度对应的普适函数值。然后将动荷载历程带入到有限元软件中进行动态数值模拟,求出静止裂纹的动态应力强度因子历程,再用普适函数值对其进行近似修正。最后根据试样的起裂时刻和穿过CPG中点的时刻,由相应的动态应力强度因子历程分别确定砂岩的动态起裂和动态扩展韧度,它们分别随动态加载率和裂纹扩展速度的提高而增加。

Abstract

The opening-mode dynamic fracture test was conducted with sandstone specimens of holed single cracked flattened Brazilian disc,they
 were impacted with a large-diameter (100 mm) split Hopkinson pressure bar.Considering influences of material inertia effect and  crack propagation velocity on the dynamic stress intensity factor,an experiment-numerical-analytical method was used to obtain the dynamic initiation toughness of sandstone under different dynamic loading rates,and the dynamic propagation toughness of sandstone at different crack propagating velocities.Firstly,dynamic loading histories of specimens were obtained in dynamic tests.The crack initiation instant and crack propagating velocity of a specimen were sequentially measured with a crack propagation gauge (CPG).The universal function value corresponding to the crack propagating velocity was obtained.Then,the dynamic numerical simulation was conducted using a finite element software and taking the dynamic loading histories as inputs to obtain the dynamic stress intensity factor histories of a static crack,they were modified with the corresponding universal function value.Finally,according to the crack initiation instant and the instant crossing the middle point of the CPG,the dynamic initiation toughness and the dynamic propagation toughness were determined with the corresponding histories of the dynamic stress intensity factor.It was shown that the dynamic initiation toughness of sandstone increases with increase in dynamic loading rate,and the dynamic propagation toughness of sandstone increases with increase in crack propagation speed.

关键词

圆孔内单边裂纹平台巴西圆盘 / 实验-数值-解析法 / 动态起裂韧度 / 动态扩展韧度 / 裂纹扩展计 / 普适函数

Key words

holed single cracked flattened Brazilian disc / experimental-numerical-analytical method / dynamic initiation toughness / dynamic propagation toughness / crack propagation gauge / universal function

引用本文

导出引用
周妍1,2,张财贵1,王启智1,3. 用圆孔内单边裂纹平台巴西圆盘和实验-数值-解析法确定砂岩的动态起裂和扩展韧度[J]. 振动与冲击, 2017, 36(5): 37-47
ZHOU Yan1,2,ZHANG Caigui1,WANG Qizhi1,3. Determination of dynamic initiation toughness and dynamic propagation toughness of sandstone[J]. Journal of Vibration and Shock, 2017, 36(5): 37-47

参考文献

[1] Bazant Z P, Caner F C. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing [J]. Proceedings of National Academy of Science, 2013, 110(48): 19291-19294. 
[2] Mott N F. Fracture of metals: theorertal consideration [J]. Engineering, 1948, 165: 16-18.
[3] 范天佑. 断裂动力学原理与应用[M]. 第二版. 北京:北京理工大学出版社,2006. 38-43, 108-130.
FAN Tian-you. Principle and Application of Fracture Dynamics [M]. Beijing: Beijing institute of Technology Press, 2006. 38-43, 108-130.
[4] 周妍,张财贵,杨井瑞,等. 圆孔内单边(或双边)裂纹平台巴西圆盘应力强度因子的全面标定[J]. 应用数学和力学, 2015, 36(1): 16-30.
ZHOU Yan, ZHANG Cai-gui, YANG Jing-rui, et al. Comprehensive calibration of stress intensity factor for flattened Brazilian disc with holed inner single or double cracks [J]. Applied Mathematics and Mechanics, 2015, 36(1): 16-30.
[5] ISRM Testing Commission, (co-ordinator: Ochterlony F), Suggested methods for determining the fracture toughness of rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25: 71-96.
[6] ISRM Testing Commission, (co-ordinator: Fowell R J), Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32: 57-64.
[7] Kuruppu M D, Obara Y, Ayatollahi M R, et al. ISRM-Suggested method for determining the mode I static fracture toughness using semi-circular bend specimen [J]. Rock Mechanics Rock Engineering, 2014, 47: 267–274.
[8] Zhang Q B, Zhao J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411-1478.
[9] ISRM Testing Commission. Suggested method for determining tensile strength of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(3): 99-103.
[10] Wang Q Z, Xing L. Determination of fracture roughness KIC by using the flattened Brazilian disk specimen for rocks [J]. Engineering Fracture Mechanics, 1999, 64: 193- 201.
[11] Ripperger E, Davis N. Critical stresses in a circular ring. Trans Am Soc Civil Eng, 1947, 112: 619-27.
[12] Hobbs D W. The tensile strength of rocks [J]. International Journal of Rock Machanics and Mining Sciences& Geomechanics Abstracts, 1964, 6(1): 91-97.
[13] 张盛, 王启智. 用5种圆盘试样的劈裂试验确定岩石断裂韧度[J].岩土力学, 2009, 30(1):12-18.
ZHANG Sheng, WANG Qi-zhi. Determination of rock fracture toughness by split test using five types of disc specimens [J]. Rock and Soil Mechanics, 2009, 30(1): 12-18.
[14] 张盛,王启智. 采用中心圆孔裂缝平台圆盘确定岩石的动态断裂韧度[J]. 岩土工程学报, 2006, 28(6): 723-728.
ZHANG Sheng, WANG Qi-zhi. Method for determination of dynamic fracture toughness of rock using holed-cracked flattened disc specimen [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 723-728.
[15] Yoffe E H. Moving Griffith crack [J]. Philosophical Magazine, 1950, 42: 739-750.
[16] Craggs J W. On the propgation of a crack in an elastic-brittle material [J]. J. Mech. Phys. Solids, 1960, 8: 66-75.
[17] Broberg K B. The propgation of a brittle crack [J]. Arkiv for Fysik, 1960, 18: 159-192.
[18] Baker B R. Dynamics stresse created by a moving crack. Journal of Applied Mechanics, 1962, 29: 449-458.
[19] Dally J W, Fourney W J, Irwun G R. On the uniqueness of the stress intensity factor-crack velocity relationship [J]. International Journal of Fracture, 1985, 27(3-4): 277-298.
[20] 宋义敏,杨小彬,金璐,等. 冲击荷载作用下岩石Ⅰ型裂纹动态断裂试验研究[J]. 振动与冲击, 2014, 33(11): 49-60.
SONG Yi-min, YANG Xiao-bin, Jin Lu, et al. Dynamic fracture test for rock I-type crack under impact load [J]. Journal of Vibration and Shock, 2014, 33(11): 49-60.
[21] Joudon V, Portemont G, Lauro F, et al. Experimental procedure to characterize the mode I dynamic fracture toughness of advanced epoxy resins [J]. Engineering Fracture Mechanics, 2014, 126: 166-177.
[22] Dai F, Xia K, Zheng H, Wang Y X. Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen [J]. Engineering Fracture Mechanics, 2011, 78(15): 2633-2644.
[23] Zhang Q B, Zhao J. Effect of loading rate on fracture toughness and failure micromechanisms in marble [J], Engineering Fracture Mechanics, 2013, 102: 288-309.
[24] Gao G, Huang S, Xia K, Li Z. Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests [J]. Experimental Mechanics, 2014, DOI: 10.1007/s11340-014- 9863 -5.
[25] 苟小平,杨井瑞,王启智. 基于P-CCNBD试样的岩石动态断裂韧度测试方法[J]. 岩土力学, 2013, 34(9):2449-2459
GOU Xiao-ping, YANG Jing-rui, WANG Qi-zhi. Test method for determining rock dynamic fracture toughness using P-CCNBD specimens [J]. Rock and Soil Mechanics. 2013,34(9): 2449-2459.
[26] Wang Q Z, Feng F, Ni M, et al. Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar [J]. Engineering Fracture Mechanics, 2011, 78(12): 2455-2469.
[27] 杨井瑞,张财贵,周妍,等. 用CSTBD试样确定砂岩的动态起裂和动态扩展韧度[J]. 爆炸与冲击, 2014, 34(3): 264-271.
YANG Jing-rui, ZHANG Cai-gui, ZHOU Yan, et al. Determination of dynamic initiation toughness and dynamic propagation toughness of sandstone using CSTBD specimens [J], Explosion and Shock Waves, 2014, 34(3): 264-271.
[28] 张财贵, 周妍, 杨井瑞,等. 用边裂纹平台圆环(ECFR)试样测试岩石的Ⅰ型动态断裂韧度[J]. 水利学报, 2014, 45(6): 78-87.
ZHANG Cai-gui, ZHOU Yan, YANG Jing-rui, et al. Determination of model I dynamic fracture toughness of rock using edge cracked flattened ring specimen [J]. Journal of Hydraulic Engineering, 2014, 45(6): 78-87.
[29] Popelar C H, Anderson C E, Nagy A. An experimental method for determining dynamic fracture toughness [J]. Experimental Mechanics, 2000, 40 (4): 401-407.
[30] Freund L B. Dynamic Fracture Mechanics. Cambridge University Press, Cambridge, 1990: 296-432.
[31] Bhat H S, Rosakis A J, Sammis CG. A micromechanics based constitutive model for brittle failure at high strain rate [J]. ASME, Journal of Applied Mechanics, 2012, 79: 031016 -1-12.
[32] Ren X D, Li J. Dynamic fracture in irregularly structured systems [J]. Physical Review E, 2012, 85: 055102-1-4.
[33] Markus J B, Gao H J. Dynamical fracture instabilities due to local hyperelasticity at crack tips [J]. Nature, 2006, 439 (19): 307-310.
[34] 谢和平,高峰,周宏伟,等. 岩石断裂和破碎的分形研究[J]. 防灾减灾工程学报, 2003, 23(4): 1-9.
XIE He-ping, GAO Feng, ZHOU Hong-wei, et al. Fractal fracture and fragmentation in rocks [J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(4): 1-9.
[35] 卢芳云,陈荣,林玉亮,等. 霍普金森杆实验技术[M]. 北京:科学出版社. 2013. 1-2.
LU Fang-yun, CHEN Rong, LIN Yu-liang, et al. Hopkinson bar experiment technology [M].  Beijing: Science Press. 2013. 1-2.
[36] Popelar C H, Anderson C E, Nagy A. An experimental method for determining dynamic fracture toughness [J], Experimental Mechanics, 2000, 40 (4): 401-407.
[37] 倪敏,苟小平,王启智. 霍普金森杆冲击压缩单裂纹圆孔板的岩石动态断裂韧度试验方法[J]. 工程力学, 2013, 30(1): 365-372.
NI Min, GOU Xiao-ping, WANG Qi-zhi. Test method for rock dynamic fracture toughness using single cleavage drilled compression specimen impacted by split Hopkinson pressure bar [J]. Engineering Mechanics, 2013, 30(1): 365 -37.
[38] 刘德顺,彭佑多,李夕兵. 冲击活塞的动态反演设计与试验研究[J]. 机械工程学报,1998, 34(4): 78-84.
LIU De-shun, PENG You-duo, LI Xi-bing. Inverse design and experimental study of impact piston [J]. Journal of Mechanical Engineering, 1998, 34(4): 78-84.
[39] Lok T S, Li X B, Liu D, et al. Testing and reponse of large diameter btittle materials subjected to high strain rate [J]. Journal of Materials in Civil Engineering, 2002, 14(3): 262-269.
[40] 王晓燕,卢芳云,林玉亮. SHPB实验中端面摩擦效应研究[J]. 爆炸与冲击,2006, 26(2): 134-139.
WANG Xiao-yan, LU Fang-yun, LIN Yu-liang. Study on interfacial friction effect in the SHPB tests [J]. Explosion and Shock Waves, 2006, 26(2): 134-139.
[41] 刘德顺, 李夕兵. 冲击机械系统动力学[M]. 北京: 科学出版社, 1999.
LIU De-shun, LI Xi-bing. Mechanical impact dynamics [M]. Beijing: Beijing Science Press, 1999.
[42] 杨井瑞, 张财贵, 周妍,等. 用SCDC试样测试岩石动态断裂韧度的新方法[J]. 岩石力学与工程学报,2015, 34(2): 279-292.
YANG Jing-rui, ZHANG Cai-gui, ZHOU Yan. et al. A new method for determining dynamic fracture toughness of rock using SCDC specimens [J]. Journal of Rock Mechanics and Engineering, 2015, 34(2): 279-292.
[43] Chen Y M, Wilkins M L. Numerical analysis of dynamic crack problem [J]. Engineering Fracture Mechanics, 1975, 7: 635-660.
[44] 张财贵, 周妍, 杨井瑞,等. 用分离式霍普金森压杆径向冲击边裂纹平台圆环(ECFR)试样的动态断裂试验[J]. 煤炭学报, 2015, 40(5): 1037-1046.
ZHANG Cai-gui, ZHOU Yan, YANG Jing-rui, et al. Dynamic fracture test of edge cracked flattened ring (ECFR) diametrically impacted with split Hopkinson pressure bar [J]. Journal of china coal society, 2015, 40(5): 1037-1046.
[45] Wang Q Z, Yang J R, Zhang C G. et al. Sequential determination of dynamic initiation and propagation toughness of rock using experimental-numerical-analytical method [J]. Engineering Fracture Mechanics, online, 2015.
[46] 谢和平, 陈至达. 分形(fractal)几何与岩石断裂[J]. 力学学报, 1988, 20(3): 264-271.
XIE He-ping, CHEN Zhi-da. Fractal geometry and fracture of rock [J]. Chinese Journal of Theoretical and Applied Mechanics, 1988, 20(3): 264-271.

PDF(2693 KB)

Accesses

Citation

Detail

段落导航
相关文章

/