基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型

曹扬悦也1,蒋志刚1,谭清华1,蒙朝美1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 48-53.

PDF(1341 KB)
PDF(1341 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (5) : 48-53.
论文

基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型

  • 曹扬悦也1,蒋志刚1,谭清华1,蒙朝美1
作者信息 +

Penetration model for concrete-rock targets based on hoek-brown criterion

  • CAO Yangyueye,JIANG Zhigang,TAN Qinghua,MENG Chaomei
Author information +
文章历史 +

摘要

基于空腔膨胀理论建立工程模型是研究侵彻问题的常用方法。针对射弹侵彻岩石-混凝土类脆性材料半无限靶问题,基于靶体的弹性-裂纹-粉碎响应模式,粉碎区采用考虑围压的Hoek-Brown准则,得到了准静态球形空腔膨胀的空腔壁压力。在Forrestal两个阶段侵彻模型中,用所得空腔壁压力代替隧道侵彻阶段的侵彻阻力,得到刚性弹侵彻岩石-混凝土类脆性材料半无限靶的侵彻深度预估公式,与文献侵彻试验以及现有典型侵彻深度预估公式比较表明,本文预估公式适用范围更广,对于(超)高强混凝土和岩石材料靶的预测精度更高。

Abstract

The cavity expansion theory is a common method to establish an engineering model for penetration problems.Based on a target’s elastic-cracked-comminuted response model,a new semi-infinite spherical cavity expansion model for brittle materials,such as,rock and concrete was built here.The material in the comminuted region was assumed to obey Hoek-Brown yield criterion.The static cavity expansion stress was obtained,and used as an alternative for the penetration resistance in the two-stage penetration model proposed by Forrestal.A predicting model of penetration depth for rigid projectiles penetrating a semi-infinite brittle material target was developed.It was shown that compared with previous models,the proposed prediction model here is more adaptive,especially,for high strength concrete and rock targets.

关键词

侵彻 / 混凝土-岩石靶 / 工程模型 / 空腔膨胀 / Hoek-Brown准则

Key words

penetration / concrete-rock target / engineering model / cavity expansion / Hoek-Brown criterion

引用本文

导出引用
曹扬悦也1,蒋志刚1,谭清华1,蒙朝美1. 基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型[J]. 振动与冲击, 2017, 36(5): 48-53
CAO Yangyueye,JIANG Zhigang,TAN Qinghua,MENG Chaomei. Penetration model for concrete-rock targets based on hoek-brown criterion[J]. Journal of Vibration and Shock, 2017, 36(5): 48-53

参考文献

[1] Heuze FE. An overview of projectile penetration into geological materials, with emphasis on rock[J]. Int J Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1990, 27(1):1-14.
[2] Li QM, Reid SR, Wen HM. Local impact effects of hard missiles on concrete targets[J]. Int J Impact Eng, 2005, 32: 224-284.
[3] Ranjan R, Banerjee S, Singh RK, et al. Local impact effects on concrete target due to missile: An empirical and numerical approach[J]. Annals of Nuclear Energy, 2014, 68: 262-275.
[4] Ben-Dor G, Dubinsky A, Elperin T. Analytical engineering models for predicting high speed penetration of hard projectiles into concrete shields: A review [J]. Int J Damage Mechanics, 2015, 24(1): 76–94.
[5] Forrestal MJ, Altan BS, Cargile D, et al. An empirical equation for penetration depth of ogive-nose projectile into concrete targets [J]. Int J Impact Eng, 1994, 15: 395-405.
[6] Forrestal MJ, Frew DJ, Hanchak SJ, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. Int J Impact Eng, 1996, 18: 465-476.
[7] Frew DJ, Hanchak SJ, Green ML, et al. Penetration of concrete targets with ogvie-nose steel rods[J]. Int J Impact Eng, 1998, 21: 489-497.
[8] Chen XW, Li QM. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. Int J Impact Eng, 2002, 27: 619-637.
[9] Li QM, Chen XW. Dimensionless formula for penetration depth of concrete target impacted by a non-deformable projectile [J]. Int J Impact Eng, 2003, 28: 93-116.
[10] Forrestal MJ, Tzou DY. A spherical cavity-expansion penetration model for concrete targets [J]. Int J Solids and Structures, 1997, 34(31/32): 4127-4146.
[11] 李志康, 黄风雷. 考虑混凝土孔隙压实效应的球形空腔膨胀理论[J].岩土力学, 2010, 31(5): 1481-1485.
Li ZK, Huang FL. A spherical cavity expansion theory of concrete considering voids compacted effects [J]. Rock and soil mechanics, 2010, 31(5): 1481-1485.
[12] 李志康, 黄风雷.高速杆弹侵彻半无限混凝土靶的理论分析[J].北京理工大学学报,2010,30(1): 10-13.
Li ZK, Huang FL. High Velocity Long Rod Projectile’s Penetration into Semi-Infinite Concrete Targets[J]. Transactions of Beijing Institute of Technology, 2010,30(1): 10-13.
[13] 郭香华, 张庆明, 何远航. 弹体正侵彻混凝土厚靶的运动规律理论研究[J]. 北京理工大学学报, 2011, 31(3): 269-271, 293.
Guo XH, Zhang QM, He YH. Study on Kinematics Properties of Projectile Normal Penetration into Semi-Infinite Concrete Targets[J]. Transactions of Beijing Institute of Technology, 2011, 31(3): 269-271, 293.
[14] 郭香华, 张庆明, 何远航.混凝土厚靶在弹体正侵彻下的响应研究[J].北京理工大学学报, 2011, 31(7): 765-767.
Guo XH, Zhang QM, He YH. Study on Behavior of Semi-Infinite Concrete Targets Subjected to Projectile Normal Penetration[J]. Transactions of Beijing Institute of Technology, 2011, 31(7): 765-767.
[15] He T, Wen HM, Guo XJ. A spherical cavity expansion model for penetration of ogival-nosed projectiles into concrete targets with shear-dilatancy [J]. Acta Mechanica Sinica, 2011, 27(6): 1001-1012.
[16] Guo XJ, He T, Wen HM. Cylindrical cavity expansion penetration model for concrete targets with shear dilatancy [J]. Engineering Mechanics, 2012, 139(9): 1260-1267.
[17] 黄民荣, 顾晓辉, 高永宏. 基于Griffith强度理论的空腔膨胀模型与应用研究[J]. 力学与实践, 2009, 31(5): 30-34.
Huang MR, Gu XH, Gao YH. Cavity expansion model based on the Griffith strength theory and its application [J]. Mechanics in Engineering, 2009, 31(5): 30-34.
[18] Feng J, Li W, Wang XM, et al. Dynamic spherical cavity expansion analysis of rate-dependent concrete material with scale effect [J]. Int J Impact Eng, 2015, 84: 24-37.
[19] 彭永, 方秦, 吴昊等. 对弹体侵彻混凝土靶体阻力函数计算公式的探讨[J]. 工程力学, 2015, 32(4): 112-119.
Peng Y, Fang Q, Wu H, et al. Discussion on the resistance forcing function of projectiles penetrating into concrete targets [J]. Engineering Mechanics, 2015, 32(4): 112-119.
[20] 张德志, 张向荣, 林俊德等. 高强钢弹对花岗岩正侵彻的试验研究[J]. 岩石力学与工程学报, 2005, 24(9): 1612-1618.
Zhang DZ, Zhang XR, Lin JD, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612-1618.
[21] 沈俊, 徐翔云, 何翔等. 弹体高速侵彻岩石效应试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 4207-4212.
Shen J, Xu XY, He X, et al. Experimental study of effect of rock targets penetrated by high-velocity projectiles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29: 4207-4212.
[22] 王海兵, 寿列枫, 张建鑫等. 弹丸撞击下花岗岩靶破坏效应试验与数值分析[J]. 岩石力学与工程学报, 2014, 32(2): 366-375.
Wang HB, Shou LF, Zhang JX, et al. Experiments and numerical analysis of destructive effects of granite target under impact of projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 32(2): 366-375.
[23] 张德志, 林俊德, 唐润棣等. 高强度岩石侵彻经验公式[J]. 兵工学报, 2006, 27(7):15-18
Zhang DZ, Lin JD, Tang RD, et al. An empirical equation for penetration depth of projectiles into high-strength rock targets [J]. ACTA Armamentarii, 2006, 27(7):15-18.
[24] 王明洋, 谭可可, 吴华杰等. 钻地弹侵彻岩石深度计算新原理与方法[J]. 岩石力学与工程学报, 2009, 28(9): 1863-1869.
Wang MY, Tan KK, Wu HJ, et al. New method of calculation of projectile penetration into rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1863-1869.
[25] 吴昊, 方秦, 龚自明等.应用改进的双剪强度理论分析岩石靶体的弹体侵彻深度[J]. 工程力学, 2009, 26(8):216-222.
Wu H, Fang Q, Gong ZM, et al. Analysis on penetration depth of projectiles into rock targets based on the improved twin shear strength theory [J]. Engineering Mechanics, 2009, 26(8): 216-222.
[26] 吴昊, 方秦, 龚自明. 考虑刚性弹弹头形状的混凝土(岩石)靶体侵彻深度半理论分析[J]. 爆炸与冲击, 2012, 32(6): 573-580.
Wu H, Fang Q, Gong ZM. Semi-theoretical analysis for penetration depth of rigid projectiles with different nose geometries into concrete (rock) targets [J]. Explosion and Shock Waves, 2012, 32(6): 573-580.
[27] Hoek E, Brown ET. Empirical strength criterion for rock masses [J]. Journal of the Geotechnical Engineering Division (ASCE), 1980, 106(9): 1013-1035.
[28] Hoek E. Strength of jointed rock masses [J]. Geotechnique, 1983, 23(3): 187-223.
[29] Hoek E, Martin CD. Fracture initiation and propagation in intact rock--A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6: 287-300.
[30] 王哲. 平面应变状态下混凝土力学行为的三轴试验研究[J].土木工程学报, 2012, 45(10): 62-71.
Wang Z. Tri-axial experimental study of the mechanical behavior of concrete in plane strain state [J]. China Civil Engineering Journal, 2012, 45(10): 62-71.
[31] Satapathy S, Bless S. Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis [J]. Mechanics of Materials, 1996, 23(4): 323-330.
[32] Zhang MH, Shim VPW, Lu G, et al. Resistance of high-strength concrete to projectile impact [J]. Int J Impact Eng, 2005, 31: 825-841.
[33] Frew DJ, Forrestal MJ, Hanchak SJ. Penetration experiments with limestone targets and ogive-nose steel projectiles. ASME J Appl Mech, 2000, 67: 841-845.
[34] Fossum AF, Pfeifle TW, Mellegard KD, et al. Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model [J]. Mechanics of Materials, 1995, 21: 119-137.

PDF(1341 KB)

Accesses

Citation

Detail

段落导航
相关文章

/