超高速碰撞多层板结构破碎效应研究对空间碎片防护及动能武器毁伤效应研究有着重要意义. 本文采用ANSYS/AUTODYN程序的SPH方法,对超高速碰撞碎片云的形成过程进行了数值模拟,某典型时刻一次及二次碎片云形貌的数值模拟结果与实验结果吻合较好,验证了计算方法和模型参数的正确性.在此基础上采用数值模拟方法,对钨合金、轧制均质装甲(Rolled Homogeneous Armor,简称RHA)及LY12铝三种材料的圆柱形弹体超高速碰撞薄板的破碎规律进行了研究,基于量纲分析方法得出了弹体破碎长度随弹靶材料特性、弹靶尺寸及初始撞击速度变化的关系式. 并研究了钨合金及RHA两种材料的长杆弹对八层RHA板结构的超高速碰撞效应.
Abstract
To study fragmentation effect of a cylindrical projectile with a hypervelocity impacting a thin plate structure is of great significance for space debris protection and kinetic energy weapons damage effect.Here,the debris cloud forming process and expanding were studied with the SPH method of ANSYS/AUTODYN code.It was shown that the numerical simulation results for the first and the secondary debris cloud morphologies are in good agreement with the test results,and the correctness of the calculation method and the model parameters was verified.Furthermore,the fragmentation laws of cylidrical projectiles made by 3 materials of tungsten alloys,RHA and LY12 aluminum with a hypervelocity impacting a thin plate structure were studied with the numerical simulation method.The empirical equations relating the fragment length of projectiles to target material properties,target size and inital impacting velocity are obtained with the dimensional analysis method.
关键词
超高速碰撞 /
SPH方法 /
圆柱形长杆弹 /
破碎规律
{{custom_keyword}} /
Key words
hypervelocity impact /
SPH method /
long cylindrical rod /
fragment law
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] F.L. Whipple, Meteorites and Space Travel[J]. Astronomical Journal, No. 1161, pp. 131 (1947).
[2] C.J.Maiden,and A.R.McMillan, An investigation of the protection afforded a spacecraft by a thin shield, AIAA Journal, pp. 1992- 1998, 1964
[3] Piekutowski AJ.Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates. Int J Impact Eng 1993;14:573–86.
[4] Piekutowski AJ, Fragmentation-Initiation Threshold for Spheres Impacting at Hypervelocity[J]. int. J. engng, Vol.29(2003),pp:563-574.
[5] Piekutowski AJ. Debris clouds produced by the hypervelocity impact of nonspherical projectiles. Int J Impact Eng 2001;26:613–24.
[6] L.B.Lucy, A numerical approach to the testing of the fission hypothesis[J], Astron. J., 82, 1013(1977)
[7] 汪庆桃,张庆明,吴克刚等. 超高速碰撞形成一次碎片云特性研究[J]. 国防科技大学学报, 2013, 35(5):124-128.
WANG Qing-tao, ZHANG Qing-ming, WU ke-gang, et al. Description of the First Debris Clouds Formed by Hypervelocity Impact[J]. Journal of National University of Defence Technology, 2013, 35(5):124-128.(in Chinese)
[8] 汪庆桃,张庆明. 多层板结构超高速碰撞效应的数值模拟[J]. 兵工学报,33:227-230,2012.
WANG Qing-tao,ZHANG Qing-ming. Simulation for Damage Effect about Multi-plate Structure Impact by Hypervelocity Projectil[J]. ACTA ARMAMENTARⅡ, 2012,33:227-230.(in Chinese)
[9] ANSYS AUTODYN 14.0. Theory manual, ANSYS Inc. Pittsburgh.
[10] Johnson G.R., Cook W.H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures[C]. Proceedings of the 17th International Symposium on Ballistics. Holland, [s.n.], 1983. 541-547.
[11] S. Hiermaier, D. Konke, A.J. Stilp and K. Thoma. Computational simulation of the hypervelocity impact of Al- spheres on thin plates of different materials[J]. Int. J. Impact Engng. 20, 363-374,1997
[12] 汪庆桃. 多层等效结构的超高速碰撞效应[D]. 北京: 北京理工大学: 2010.
WANG Qing-tao. Effect about Multi-layer Equivalent Structures Impact by Hypervelocity Projectile[D]. Beijing institute of technology, Beijing: 201001.(in Chinese)
[13] Piekutowski AJ.Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates. Int J Impact Eng 1993;14:573–86.
[14] S.R. Beissel, C.A. Gerlach, G.R. Johnson. Hypervelocity impact computations with finite elements and meshfree particles[J]. int. J. impact engng, Vol.33(2006), pp.80-90.
[15] D. Depczuk, W.P. Schonberg, Characterizing debris clouds created in oblique orbital debris particle impact[J], Journal of aerospace engineering, 16:4, 177-190, 2003
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}