基于ROSST的列车轴承轨边声学信号校正与诊断研究

熊伟 1, 张海滨 1,何清波 1,孔凡让 1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 11-17.

PDF(1303 KB)
PDF(1303 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 11-17.
论文

基于ROSST的列车轴承轨边声学信号校正与诊断研究

  • 熊伟 1, 张海滨 1,何清波 1,孔凡让 1
作者信息 +

Doppler distortion removal based on reassignment operator and SST for the wayside acoustic signal recovery and fault diagnosis of train bearings

  • XIONG Wei,ZHANG Haibin,HE Qingbo,KONG Fanrang
Author information +
文章历史 +

摘要

由列车道旁麦克风采集的列车轴承故障声学信号存在多普勒畸变现象,需要在信号处理过程中进行校正和相关诊断。文章利用重分配算子同步压缩变换(Reassignment Operator and SynchroSqueezing Transform, ROSST)获取高分辨率时频分布,通过脊线提取、莫尔斯声学理论和非线性拟合得到信号的多普勒畸变参数,再对原信号重采样,消除多普勒畸变。文章将其应用于仿真信号和列车轴承多普勒畸变故障实验信号的校正与诊断,验证了方法的有效性。

Abstract

The phenomenon of Doppler distortion in the acoustic fault signal of moving train needs to be regulated during signal preprocessing.A Doppler distortion removal method based on ROSST (Reassignment Operator Synchro Squeezing Transform)  was proposed to solve the problem,and  was applied to the wayside fault diagnosis  of moving train bearings.The time-frequency distribution with high resolution  was obtained by using the ROSST.A resampling method was then carried out to remove the Doppler distortion based on the ridge extraction,Morse acoustic theory and nonlinear data fitting.A simulation signal and experimental acoustic signals of train bearing with defects on the outer race and inner race were utilized to verify the availability.The results indicate the effectiveness of the proposed method.

关键词

重分配算子 / 同步压缩变换 / 多普勒畸变 / 列车轴承故障诊断

Key words

reassignment operator / synchrosqueezing transform / Doppler distortion / train bearings fault diagnosis

引用本文

导出引用
熊伟 1, 张海滨 1,何清波 1,孔凡让 1. 基于ROSST的列车轴承轨边声学信号校正与诊断研究[J]. 振动与冲击, 2017, 36(6): 11-17
XIONG Wei,ZHANG Haibin,HE Qingbo,KONG Fanrang. Doppler distortion removal based on reassignment operator and SST for the wayside acoustic signal recovery and fault diagnosis of train bearings[J]. Journal of Vibration and Shock, 2017, 36(6): 11-17

参考文献

[1]  H C Choe, Y Wan, A K Chan.Neural pattern identification of railroad wheel-bearing faults from audible acoustic signals: comparison of FFT, CWT, and DWT features[J]. SPIE Proceedings on Wavelet Application, 1997, 3078:480 -496.
[2]  M Stojanovic, J A Catipovic, J G Proakis.Phase-coherent digital communications for underwater acoustic channels[J]. Oceanic Engineering, 1994, 19(1):100-111.
[3]  M Johnson, L Freitag, M Stojanovic.Improved Doppler tracking and correction for underwater acoustic communications[J].IEEE International Conference on Acoustics, Speech and Signal Processing, 1997, 1:575-578.
[4]  杨殿阁, 罗禹贡, 李兵, 等. 基于时域多普勒修正的运动声全息识别方法[J]. 物理学报, 2010, 59(07):4738-4747.
Yang Dian-ge, Luo Yu-gong, Li Bing, et al.Acoustic holography method for measuring moving sound source with correction for Doppler Effect in time-domain[J]. Acta Phys. Sin., 2010, 59(7):4738-4747.
[5]  J Dybala, A Galezia, J Maczak.Verification of Doppler Effect removal method for the needs of pass-by railway condition monitoring system[J]. Diagnostyka, 2008, 4(48):25-30.
[6]  张翱, 胡飞, 沈长青, 等.基于能量重心法的列车轴承多普勒畸变故障声信号校正诊断研究[J]. 振动与冲击, 2014, 33(5):1-7.
ZHANG Ao, HU Fei, SHEN Chang-qing, et al.Doppler distortion removal based on energy centrobaric method for wayside fault diagnosis of train bearing by acoustic signals[J]. Journal of Vibration and Shock, 2014, 33(5):1-7.
[7] W Heisenberg.über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik[J]. Zeit. für Phys., 1927, 43:172-198.
[8]  I M Zoukaneri, J P Milton.Instantaneous frequency and Wigner-Ville distribution using the maximum entropy method: Application for gas and hydrates identification[C]. SEG Technical Program Expanded Abstracts, 2013, :2376-2381.
[9]  K Kodera, C De Villedary, R Gendrin.A new method for the numerical analysis of nonstationary signals[J]. Phys. Earth Plan. Int., 1976, 12(2):142-150.
[10]  F Auger, P Flandrin.Improving the readability of time-frequency and time-scale representations by the reassignment method[J].IEEE Trans. Signal Process, 1995, 43(5):1068-1089.
[11]  P Flandrin, F Auger, E Chassande-Mottin.Time–frequency reassignment: from principles to algorithms[J]. Applications in Time–Frequency Signal Processing, 2002, 5:179-203.
[12]  I Daubechies, S Maes.A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models[J]. Wavelets in Medicine and Biology, 1996, :527-546.
[13]  I Daubechies, J Lu, H Wu.Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 3(30):243-261.
[14] T Oberlin, S Meignen, V Perrier.Second-Order Synchrosqueezing Transform or Invertible Reassignment? Towards Ideal Time-Frequency Representations[J]. IEEE Transactions on Signal Processing, 2015, 63(5):1335-1344.
[15]  S Wang, X Chen, Y Wang, et al.Nonlinear squeezing time-frequency transform for weak signal detection[J]. Signal Processing, 2015, 8(113):195-210.
[16]  C Li, M Liang.Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform[J]. Mechanical Systems and Signal Processing, 2012, 26:205-217.
[17] Z Feng, X Chen, M Liang.Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions[J]. Mechanical Systems and Signal Processing, 2015, 52:360-375.

PDF(1303 KB)

711

Accesses

0

Citation

Detail

段落导航
相关文章

/