基于声传感器阵列的连续泄漏定位方法研究

边旭 1,张宇 1,王佳强 1,李一博 1,靳世久 1, 孙立臣 2,綦磊 2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 134-139.

PDF(2159 KB)
PDF(2159 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 134-139.
论文

基于声传感器阵列的连续泄漏定位方法研究

  • 边旭 1,张宇 1,王佳强 1,李一博 1,靳世久 1, 孙立臣 2,綦磊 2
作者信息 +

Leakage location method based on an ultrasonic sensor array

  • BIAN Xu1,ZHANG Yu1,WANG Jiaqiang1,LI yibo1,JIN Shijiu1,SUN lichen2,QI Lei2
Author information +
文章历史 +

摘要

本文针对压力容器(如在轨航天器)发生泄漏时的漏孔定位问题进行研究,提出了一种基于声传感器阵列的定位方法。当已发生泄漏时,该方法通过声传感器阵列获取器壁中传播的超声波信号,并分析阵列中各个传感器采集数据间的时空相关性,实现了对泄漏源的快速准确定位。文中分析了泄漏所激发的超声波信号在薄板中的传播特性,证明了采集信号相关性随采集点间距离的增大而减小,从而指导传感器阵列的设计与制作,同时通过设计相应的实验讨论了不同阵元间距条件下的定位精度。实验结果表明定位误差受阵列中阵元数目及阵元间间距影响,当阵元数目为8,阵元间距为8mm情况下,本算法在1m2 的平板上,定位绝对误差平均值小于10mm。

Abstract

Based on an ultrasonic sensor array,a method for leakage location of pressure containers (such as spacecraft) was proposed.When the leaking happens,the method could accomplish the fast and accurate location of  leakage source through acquiring a set of ultrasonic signals on the wall of  container by using an ultrasonic sensor array,and analyzing the time-space correlation among all the data collected by each sensor in the array.Moreover, the propagation characteristics of leakage signals in a thin plate were analysed.It proves that the correlation between the collected signals will decrease as the distances between the collection points increase,which provides a reference to the design of sensor arrays.Meanwhile,the related experiments were designed to discuss the location accuracy of different sensor arrays with different distances between the sensors in the array.According to the experimental results,the location error is influenced by the number of sensors and the distances between them in the array.When the number of sensors in the array is eight,and the distances between them are 8mm,the mean value of the absolute location error is less than 10mm on a one square meter plate.

关键词

超声 / 泄漏 / 定位 / 阵列传感器

Key words

ultrasound / leakage / location / array sensor

引用本文

导出引用
边旭 1,张宇 1,王佳强 1,李一博 1,靳世久 1, 孙立臣 2,綦磊 2. 基于声传感器阵列的连续泄漏定位方法研究[J]. 振动与冲击, 2017, 36(6): 134-139
BIAN Xu1,ZHANG Yu1,WANG Jiaqiang1,LI yibo1,JIN Shijiu1,SUN lichen2,QI Lei2. Leakage location method based on an ultrasonic sensor array[J]. Journal of Vibration and Shock, 2017, 36(6): 134-139

参考文献

[1] Wilson WC, Coffey NC, Madaras EI. Leak Detection and Location Technology Assessment for Aerospace Applications [J]. NASA/EM, 2008
[2] Builo S I. Acoustic-Emission Diagnostics of the Effect of Hydrogen on Properties of Materials [J]. Russ J Nondestruct+, 2009, 45 (11): 818-21.
[3] Murvay P S, Silea I. A Survey On Gas Leak Detection and Localization Techniques [J]. J Loss Prevent Proc, 2012, 25 (6): 966-73.
[4] Davoodi S, Mostafapour A. Gas leak locating in steel pipe using wavelet transform and cross-correlation method [J]. Int. J. Adv. Manuf. Technol, 2014, 70: 1125–1135.
[5] 刘贵杰,徐萌,王欣,等. 基于HHT的管道阀门内漏声发射检测研究[J]. 振动与冲击,2012, 31(23): 62-66.
LIU Gui-jie, XU Meng, WANG Xin, et al. AE detection for pipeline valve leakage based on HHT [J]. Journal of Vibration and Shock, 2012, 31(23): 62-66.
[6] 何田, 刘耀光, 陈亚农,等. 基于声发射波束形成法的转静子碰摩故障定位[J]. 航空动力学报, 2011, 26(10):2207-2213.
He Tian, Liu Yao-guang, Chen Ya-nong, et al. Method for locating rub fault of rotor-stator based on acoustic emission beamforming [J]. Journal of Aerospace Power, 2011, 26(10): 2207-2213.
[7] 沈功田, 刘时风, 王玮. 基于声波的管道泄漏点定位检测仪的开发[J]. 无损检测, 2010(1):53-56.
Shen Gong-tian, Liu Shi-Feng, Wang Wei, et al. Development of pipeline leakage location instrument based on acoustic waves [J]. Nondestructive Test, 2010(1):53-56.
[8] Stephen D Holland, Ron Roberts, D E Chimenti, Jun Ho Song. An ultrasonic array sensor for spacecraft leak direction finding [J]. Ultransonics, 2006, 45(2006): 121-126
[9] Stephen D Holland, Ronald A Roberts, Dale E Chimenti. Leak detection in spacecraft using structure-borne noise with distributed sensors [J]. APPLIED PHYSICS LETTERS, 2005, 86:1-4.
[10] Anthony Lombard. TDOA estimation for multiple sound sources in noisy and reverberant environments using broadband independent component analysis [J]. Audio, Speech, and Language Processing, 2011(6):1490-1503
[11] Rose Joseph L. Ultrasonic Waves in Solid Media [M]. Cambridge: Cambridge University Press, 2004.
[12] Van Trees, H L, Harry L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory [M]. John Wiley and Sons, Inc.: New York, NY, USA, 2002.
[13] Van TREES H L. Optimum array processing. Part IV of Detection, Estimation, and Modulation Theory [M]. New York: John Wiley and Sons, Inc. 2002
[14] Hua, Y, Sarkar, T K, Weiner, D D. An L-shaped array for estimating 2-D directions of wave arrival [J]. IEEE Trans. Antennas Propag, 1991, 39: 143–146.
[15] Zhang X, Li J, Xu L. Novel two-dimensional DOA estimation with L-shaped array [J]. EURASIP J. Adv. Signal Process, 2011, 1:1–7.
[16] Xu Bian, Yu Zhang, Yibo Li, Xiaoyue Gong, Shijiu Jin. A New Method of Using Sensor Arrays for Gas Leakage Location Based on Correlation of the Time-Space Domain of Continuous Ultrasound [J]. Sensors, 2015, 15(4): 8266-8283;
[17] Kundu T, Nakatani H, Takeda N. Acoustic Source Localization in Anisotropic Plates [J]. Ultrasonics, 2012, 52 (6): 740-6.
[18] Allan D. Pierce. Acoustics: an introduction to its physical principles and applications [M]. 1981

PDF(2159 KB)

Accesses

Citation

Detail

段落导航
相关文章

/