泡沫填充多边形单锥管与双锥管斜向加载下耐撞性分析

陈亚枫, 白中浩

振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 18-26.

PDF(1259 KB)
PDF(1259 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 18-26.
论文

泡沫填充多边形单锥管与双锥管斜向加载下耐撞性分析

  • 陈亚枫, 白中浩
作者信息 +

Crashworthiness analysis of foam-filled single and bitubal polygonal tapered thin-walled tubes under oblique impact loading

  • CHEN Yafeng,BAI Zhonghao
Author information +
文章历史 +

摘要

锥形泡沫填充结构结合了泡沫填充结构与锥形结构的优势,具有优异的吸能性和抵抗失稳变形的能力。研究了具有不同横截面的泡沫填充多边形单锥管(FSPTTs)与泡沫填充多边形双锥管(FBPTTs)在四种冲击角度下的耐撞性。采用多准则评估方法(COPRAS)对不同横截面的泡沫填充单锥管与泡沫填充双锥管的综合耐撞性进行了评估。评估表明:综合考虑多种冲击角度时,圆形截面泡沫填充单锥管较其他截面泡沫填充单锥管具有更好的耐撞性;圆形截面泡沫填充双锥管较其他截面泡沫填充双锥管具有更好的耐撞性。最后,针对圆形截面泡沫填充单锥管与圆形截面泡沫填充双锥管,以最大比吸能和最小峰值力为目标,采用非支配遗传算法对这两种结构在四种冲击角度下进行了多目标优化。结果表明:当冲击角度从0°变化到10°时,两种结构的pareto曲线变化不大,而当冲击角度从10°变化到30°时,冲击角度对pareto曲线形状和位置有显著影响;在冲击角度为0°和10°时,圆形截面泡沫填充双锥管的耐撞性优于圆形截面泡沫填充单锥管,而在冲击角度为20°和30°时,圆形截面泡沫填充单锥管的耐撞性优于圆形截面泡沫填充双锥管。实际应用中,可以根据工程需要选择合适的结构。

Abstract

The foam-filled taper tube,which combines the advantages of foam-filled structures and taper structures,has excellent abilities of energy absorption and buckling deformation resisting.The crashworthiness of foam-filled single polygonal tapered tubes(FSPTTs) and foam-filled bitubal polygonal tapered tubes(FBPTTs) under oblique impact loading was studied.A complex proportional assessment and evaluation method(COPRAS) was adopted to evaluate the comprehensive crashworthiness of FSPTTs and FBPTTs.It is found that the foam-filled single circular (FSC) tube and foam-filled bitubal circular (FBC) tube  respectively perform better than  FSPTTs and FBPTTs with other cross sectional configurations.The multiobjective optimization was conducted on the FSC and FBC tubes under four different impact angles to maximize the specific energy absorption and peak force.The results show that the Pareto curves of both FSC and FBC tubes have only little change when the impact angle changes from 0° to 10°,while the impact angle has significant effect on the Pareto curves when the impact angle changes from 10° to 30° .The FBC tube performs better when the impact angle is 0° or 10°,while the FSC tube performs better when the impact angle is 10° or 20° .Appropriate structures can be chosen to meet practical application  requirements.

关键词

泡沫填充 / 耐撞性 / 锥形结构 / 斜向加载 / 多目标优化

Key words

tube / crashworthiness / tapered tube / oblique impact / multiobjective optimization

引用本文

导出引用
陈亚枫, 白中浩. 泡沫填充多边形单锥管与双锥管斜向加载下耐撞性分析[J]. 振动与冲击, 2017, 36(6): 18-26
CHEN Yafeng,BAI Zhonghao. Crashworthiness analysis of foam-filled single and bitubal polygonal tapered thin-walled tubes under oblique impact loading[J]. Journal of Vibration and Shock, 2017, 36(6): 18-26

参考文献

[1] AHMAD Z, THAMBIRATNAM D P. Application of  foam-filled conical tubes in enhancing the crashworthiness  performance of vehicle protective structures [J]. International  Journal of Crashworthiness, 2009, 14(4): 349-363.
[2] 文桂林, 孔祥正, 尹汉锋, 等. 泡沫填充夹芯墙多胞结构 的耐撞性多目标优化设计 [J]. 振动与冲击, 2015, 34(5):  115-121.
     WEN Guilin,KONG Xiangzheng,YIN Hanfeng et al.  Multi-objective crashworthiness optimization design of  foam-filled sandwich wall multi-cell structures[J]. Journal of  vibration and shock, 2015, 34(5): 115-121.
[3] HAN D C, PARK S H. Collapse behavior of square  thin-walled columns subjected to oblique loads [J].  Thin-Walled Structures, 1999, 35(3): 167-184.
[4] REYES A, LANGSETH M, HOPPERSTAD O S. Square  aluminum tubes subjected to oblique loading [J].  International Journal of Impact Engineering, 2003, 28(10):  1077-1106.
[5] REYES A, LANGSETH M, HOPPERSTAD O S.  Crashworthiness of aluminum extrusions subjected to oblique  loading: experiments and numerical analyses [J].  International Journal of Mechanical Sciences, 2002, 44(9):  1965-1984.
[6] REYES A, HOPPERSTAD O S, LANGSETH M. Aluminum  foam-filled extrusions subjected to oblique loading:  experimental  and numerical study [J]. International  Journal of Solids and Structures, 2004, 41(5-6): 1645-1675.
[7] MAMALIS A, MANOLAKOS D, IOANNIDIS M, et al.  Numerical simulation of thin-walled metallic circular frusta  subjected to axial loading [J]. International Journal of  Crashworthiness, 2005, 10(5): 505-513.
[8] GUPTA N, PRASAD G E, GUPTA S. Plastic collapse of  metallic conical frusta of large semi-apical angles [J].  International Journal of Crashworthiness, 1997, 2(4):  349-366.
[9] NAGEL G, THAMBIRATNAM D. Dynamic simulation and  energy absorption of tapered tubes under impact loading [J].  International Journal of Crashworthiness, 2004, 9(4):  389-399.
[10] REID S, REDDY T. Static and dynamic crushing of tapered  sheet metal tubes of rectangular cross-section [J].  International Journal of Mechanical Sciences, 1986, 28(9):  623-637.
[11] AHMAD Z, THAMBIRATNAM D P. Dynamic computer  simulation and energy absorption of foam-filled conical tubes  under axial impact loading [J]. Computers & Structures, 2009,  87(3–4): 186-197.
[12] AHMAD Z, THAMBIRATNAM D P, TAN A C C. Dynamic  energy absorption characteristics of foam-filled conical tubes  under oblique impact loading [J]. International Journal of  Impact Engineering, 2010, 37(5): 475-488.
[13] ZHANG Y, SUN G, XU X, et al. Multiobjective  crashworthiness optimization of hollow and conical tubes for  multiple load cases [J]. Thin-Walled Structures, 2014,  82(3):331-342.
[14] HOU S, HAN X, SUN G, et al. Multiobjective optimization  for tapered circular tubes [J]. Thin-Walled Structures, 2011,  49(7): 855-863.
[15] ZHANG Y, SUN G, LI G, et al. Optimization of foam-filled  bitubal structures for crashworthiness criteria [J]. Materials &  Design, 2012, 38(1):99-109.
[16] ZHENG G, WU S, SUN G, et al. Crushing analysis of  foam-filled single and bitubal polygonal thin-walled tubes [J].  International Journal of Mechanical Sciences, 2014,  87(1):226-240.
[17] LU G, YU T. Energy absorption of structures and materials  [M]. Elsevier, 2003.
[18] CAO L, ZHOU Z, JIANG B, et al. Development and  Validation of the FE Model for a 10-Year-Old Child Head [J].  Chinese Journal of Biomedical Engineering, 2014, 31(1):  63-70.
[19] KIM H-S. New extruded multi-cell aluminum profile for  maximum crash energy absorption and weight efficiency [J].  Thin-Walled Structures, 2002, 40(4): 311-327.
[20] SANTOSA S P, WIERZBICKI T, HANSSEN A G, et al.  Experimental and numerical studies of foam-filled sections  [J]. International Journal of Impact Engineering, 2000, 24(5):  509-534.
[21] LANGSETH M, HOPPERSTAD O. Static and dynamic axial  crushing of square thin-walled aluminium extrusions [J].  International Journal of Impact Engineering, 1996, 18(7):  949-968.
[22] DESHPANDE V, FLECK N. Isotropic constitutive models for  metallic foams [J]. Journal of the Mechanics and Physics of  Solids, 2000, 48(6): 1253-1283.
[23] ZHANG Z, LIU S, TANG Z. Comparisons of honeycomb  sandwich and foam-filled cylindrical columns under axial  crushing loads [J]. Thin-Walled Structures, 2011, 49(9):  1071-1079.
[24] HANSSEN A, HOPPERSTAD O, LANGSETH M, et al.  Validation of constitutive models applicable to aluminium  foams [J]. International journal of mechanical sciences, 2002,  44(2): 359-406.
[25] REYES A, HOPPERSTAD O, BERSTAD T, et al.  Constitutive modeling of aluminum foam including fracture  and statistical variation of density [J]. European Journal of  Mechanics-A/Solids, 2003, 22(6): 815-835.
[26] CHATTERJEE P, ATHAWALE V M, CHAKRABORTY S.  Materials selection using complex proportional assessment  and evaluation of mixed data methods [J]. Materials &  Design, 2011, 32(2): 851-860.
[27] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static  and dynamic crushing of square aluminium extrusions with  aluminium foam filler [J]. International Journal of Impact  Engineering, 2000, 24(4): 347-383.
[28] MIRFENDERESKI L, SALIMI M, ZIAEI-RAD S.   Parametric study and numerical analysis of empty and  foam-filled thin-walled tubes under static and dynamic  loadings [J]. International Journal of Mechanical Sciences,  2008, 50(6): 1042-1057.
[29] YIN H, WEN G, FANG H, et al. Multiobjective  crashworthiness optimization design of functionally graded  foam-filled tapered tube based on dynamic ensemble  metamodel [J]. Materials & Design, 2014, 55(1):747-757.
[30] ABRAMOWICZ W, JONES N. Dynamic progressive  buckling of circular and square tubes [J]. International  Journal of Impact Engineering, 1986, 4(4): 243-270.
[31] TARLOCHAN F, SAMER F, HAMOUDA A, et al. Design of  thin wall structures for energy absorption applications:  Enhancement of crashworthiness due to axial and oblique  impact forces [J]. Thin-Walled Structures, 2013, 71(1):7-17.
[32] SONG X, SUN G, LI G, et al. Crashworthiness optimization  of foam-filled tapered thin-walled structure using multiple  surrogate models [J]. Structural and Multidisciplinary  Optimization, 2012, 47(2): 221-231.
[33] SUN G, LI G, STONE M, et al. A two-stage multi-fidelity  optimization procedure for honeycomb-type cellular materials  [J]. Computational Materials Science, 2010, 49(3): 500-511.
[34] QI C, YANG S, DONG F. Crushing analysis and  multiobjective crashworthiness optimization of tapered  square tubes under oblique impact loading [J]. Thin-Walled  Structures, 2012, 59(1)103-119.

PDF(1259 KB)

1637

Accesses

0

Citation

Detail

段落导航
相关文章

/