全潜式浮式风机基础在不同风况下的动力特性研究

丁红岩 1,2,3, 韩彦青 3,张浦阳 1,2,3,乐丛欢 1,3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 201-206.

PDF(2220 KB)
PDF(2220 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 201-206.
论文

全潜式浮式风机基础在不同风况下的动力特性研究

  • 丁红岩 1,2,3, 韩彦青 3,张浦阳 1,2,3,乐丛欢 1,3
作者信息 +

Dynamic analysis of the submersible foundation for floating wind turbine in different wind conditions

  • DING Hongyan 1,2,3,HAN Yanqing 3,ZHANG Puyang 1,2,3,LE Conghuan 1,3 
Author information +
文章历史 +

摘要

综合半潜式、Spar式、张力腿式浮式风机基础的特点,提出一种新型全潜式浮式风机基础,并采用FAST软件耦合水动力-空气动力-控制系统-系泊系统对不同风况下的浮式风机及全潜式浮式基础的动力特性进行分析。分析结果表明全潜式浮式风机塔筒的自振频率及基础六自由度的自振频率能够较好的避开常见海浪的频率及风机运行频率1P、3P等。全潜式浮式风机在不同风况下具有较好的运动特性,全潜式浮式风机基础在不同风况下的横荡、垂荡、纵摇与风机在不同风速下受到的推力相关。

Abstract

Synthesizing the advantages of the semi-submersible,Spar and TLP types of floating offshore wind turbine foundations,a new type of submersible foundation for floating wind turbines was put forward.A coupled dynamic analysis of the wind turbine and its submersible foundation in different wind conditions was carried out by using the FAST software.The results show that the natural frequencies of the tower combined with the submersible foundation are of no coincidence with the normal wave frequencies and the 1P and 3P operating frequencies of the wind turbine.The surge and pitch of the submersible foundation are correlated with the wind turbine thrust force in different wind conditions. 

关键词

浮式风机 / 全潜式基础 / 湍流风 / FAST / 动力特性

Key words

floating wind turbine / submersible foundation / turbulent wind / FAST / dynamic analysis

引用本文

导出引用
丁红岩 1,2,3, 韩彦青 3,张浦阳 1,2,3,乐丛欢 1,3. 全潜式浮式风机基础在不同风况下的动力特性研究[J]. 振动与冲击, 2017, 36(6): 201-206
DING Hongyan 1,2,3,HAN Yanqing 3,ZHANG Puyang 1,2,3,LE Conghuan 1,3 . Dynamic analysis of the submersible foundation for floating wind turbine in different wind conditions[J]. Journal of Vibration and Shock, 2017, 36(6): 201-206

参考文献

[1] Arapogianni A, Genachte A B, Ochagavia R M, et al. Deep water—the next step for offshore wind energy[J]. European Wind Energy Association (EWEA), Brussels, Belgium, ISBN, 2013: 978-2.
[2] Jonkman J M, Matha D. A quantitative comparison of the responses of three floating platforms[M]. Golden, CO, USA: National Renewable Energy Laboratory, 2010.
[3] Stiesdal H. Hywind: The world’s first floating MW-scale wind turbine[J]. Wind Directions, 2009: 52-53.
[4] Roddier D, Cermelli C, Aubault A, et al. WindFloat: A floating foundation for offshore wind turbines[J]. Journal of Renewable and Sustainable Energy, 2010, 2(3): 033104.
[5] Jonkman J M, Matha D. Dynamics of offshore floating wind turbines—analysis of three concepts[J]. Wind Energy, 2011, 14(4): 557-569.
[6] 唐友刚, 桂龙, 曹菡, 等. 海上风机半潜式基础概念设计与水动力性能分析[J]. 哈尔滨工程大学学报, 2014, 11: 003.
Yougang TANG, Long Gui, Han Cao, et al. Conceptual design and hydrodynamic performance of the semi-submersible floating foundation for wind turbine. Journal of Harbin Engineering University, 2014, 11: 003.
[7] Jonkman J M, Buhl Jr M L. FAST user’s guide[J]. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/EL-500-38230, 2005.
[8] Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development[M]. Golden, CO: National Renewable Energy Laboratory, 2009.
[9] Matha D. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009[R]. National Renewable Energy Laboratory (NREL), Golden, CO., 2010.
[10] Jonkman B J. TurbSim user's guide: version 1.50[M]. Golden, CO, USA: National Renewable Energy Laboratory, 2009.
[11] International Electrotechnical Commission. IEC 61400-3 Wind Turbines-Part 3[S]. Switzerland, 2009.
[12] 福尔特森. 船舶与海洋工程环境荷载[M]. 杨建民, 肖龙飞,葛春花译. 上海: 上海交通大学出版社, 2008.
[13] Wadam. Wave analysis by diffraction and Morison theory[M]. SESAM user manual. Det Norske Veritas, Høvik, 2010.
[14] 董霄峰, 练继建, 杨 敏,等.谐波干扰下海上风机结构工作模态识别[J]. 振动与冲击,2015,34 (10):152-156.
Xiaofeng DONG, Jijian LIAN, Min YANG, et al. Operational modal identification of an offshore wind turbine structure under harmonic interference[J]. Journal of Vibration and Shock, 2015,34 (10):152-156.
[15] Lygren J E L. Dynamic response analysis of a tension-leg floating wind turbine[D]. Trondheim: Norwegian University of Science and Technology, 2011.

 

PDF(2220 KB)

699

Accesses

0

Citation

Detail

段落导航
相关文章

/