基于尺寸效应的微径铣刀磨损预测模型的建立与实验研究

孟杰1,陈小安2,吕中亮1,李翔1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 229-234.

PDF(985 KB)
PDF(985 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 229-234.
论文

基于尺寸效应的微径铣刀磨损预测模型的建立与实验研究

  • 孟杰1,陈小安2,吕中亮1,李翔1
作者信息 +

Establishment and experimental study of a wear prediction model of micro milling toolin consideration of the size effect

  • MENG Jie1,CHEN Xiao’an2,LV Zhongliang1,LI Xiang1
Author information +
文章历史 +

摘要

刀具磨损是影响微细铣削加工的重要因素之一,将材料的本构模型与Usui刀具磨损模型相结合,并考虑到微细加工中存在的尺寸效应,提出一种新的刀具磨损预测模型,采用有限元仿真和物理实验的方法确定硬质合金刀具铣削碳钢时刀具磨损预测模型中的相关参数,并进行了实验验证。为了更直观的观察、预测刀具磨损情况,将该模型应用于微细铣削仿真过程中,可求得任意时刻刀具的磨损及几何轮廓。为微细铣削中刀具磨损的研究提供了新的方法。

Abstract

Tool wear is one of the important factors that affect the micro milling process.Combining the constitutive model and Usui tool wear model,and considering the size effect during micro machining,a new tool wear prediction model was proposed.The relevant parameters of the prediction model for the micro milling of carbon steel workpieces by tungsten carbide tools were determined by the finite element simulation and physical experiment,which were then verified by further experiments.In order to observe and predict the tool wear more apparently,the prediction model was applied yet to a micro milling process simulation,so as to obtain the tool wear and its geometrical shape at any time in the proccss.The study provides a new method for studying the tool wear during micro milling.

关键词

微细铣削 / 微径铣刀 / 刀具磨损 / 尺寸效应 / 刀具磨损预测模型

Key words

micro milling / micro milling tool / tool wear / size effect / tool wear prediction model

引用本文

导出引用
孟杰1,陈小安2,吕中亮1,李翔1. 基于尺寸效应的微径铣刀磨损预测模型的建立与实验研究[J]. 振动与冲击, 2017, 36(6): 229-234
MENG Jie1,CHEN Xiao’an2,LV Zhongliang1,LI Xiang1. Establishment and experimental study of a wear prediction model of micro milling toolin consideration of the size effect[J]. Journal of Vibration and Shock, 2017, 36(6): 229-234

参考文献

[1] 李红涛, 来新民, 李成锋等. 介观尺度微型铣床开发及性能试验[J]. 机械工程学报,2006,42(11):162-167.
Li Hongtao, Lai Xinmin, Li Chengfeng, et al. Development of  Meso-Scale Milling  Machine Tool and its Performance Analysis[J]. Journal of Mechanical Engineering,2006,42
(11): 162-167
[2] S. De Cristofaro, N. Funaro, G.C. Feriti, et al. High-speed micro-milling: Novel coatings for tool wear reduction[J]. International Journal of Machine Tools & Manufacture,
2012, 63(4):16-20
[3] J.B.Saedon, S.L.Soo, D.K.Aspinwall, et al. Prediction and Optimization of Tool Life in Micromilling AISI D2 (~62HRC) Hardened Steel, Procedia Engineering, 2012, 41
(41):1674-1683
[4] 李晓舟,马秋瀚. 微细铣削刀具的磨损机理实验[J]. 机械科学与技术, 2013,32(8):1235-1238
Li Xiaozhou,Ma Qiuhan. Experimental Study on Wear Mechanism of Micro Milling Tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2013,32(8):
1235-1238
[5] 弯艳玲, 张学蕊, 于化东等. 高速微铣削铝合金表面粗糙度的多指标正交试验研究[J]. 中国机械工程, 2013,24(24):3278 -3282,3288
Wan Yanling, Zhang Xuerui, Yu Huadong, et al. An Multi-index Orthogonal Test Study of Aluminum Alloy Surface Roughness Using High Speed Micro-milling Process[J].
China Mechanical Engineering, 2013,24(24):3278-3282,3288
[6] W.Y.Bao, I.N.Tansel. Modeling Micro-end-milling Operations. partⅢ: Influence of Tool Wear[J].International Journal of Machine Tools & Manufacture.2000(40):2193-
2211
[7] Rahman M, Kumar A S, Prakash J R S. Micro milling of pure copper[J]. Journal of Materials Processing Technology, 2001, 116: 39-43.
[8] M. Azizur Rahman, M. Rahman, A. Senthil Kumar, et al. CNC microturning: an Application to Miniaturization[J]. International Journal of Machine Tools & Manufacture.
2005, (45):631-639
[9] X.Lin, X.P.Zhao, J.Chen. Tool Wear Prediction in Micro-end-milling with Hard Material[J]. Journal of Shanghai Jiaotong University, 2007,12(3):359-363.
[10] 赵岩, 梁迎春, 白清顺等. 微细加工中的微型铣床、微刀具磨损及切削力的实验研究[J]. 光学精密工程, 2007,15(6): 894- 902.
Zhao Yan, Liang Yingchun, Bai Qingshun, et al. Micro-milling machine tool, micro-tool wear and cutting forces in micro- machining[J]. Optics and Precision Engineering, 2007, 15
(6):894-902.
[11] 杨凯, 白清顺, 梁迎春等. 微细铣削铅黄铜时微径铣刀的损伤研究[J]. 摩擦学学报, 2008, 28(5) : 448-452
Yang Kai, Bai Qingshun, Liang Yingchun, et al. Damage of  Micro-diameter Cutter while Micro-Milling HPb63-3 Lead Brass[J]. Tribology, 2008, 28(5) : 448-452
[12] Zhu K P, Wong Y S, Hong G S. Multi-category micro-milling tool wear monitoring with continuous hidden Markov models[J]. Mechanical Systems and Signal
Processing, 2009, 23(2):547-560
[13] 陈浩峰, 王建敏, 戴一帆等. 超精密切削氟化钙单晶金刚石刀具磨损研究[J]. 中国机械工程, 2011, 22(13):1519-1522
Chen Haofeng, Wang Jianmin, Dai Yifan, et al. Research on Diamond Tool Wear in Ultra-precision Cutting of CaF2 Crystals[J]. China Mechanical Engineering, 2011, 22(13):
1519-1522
[14] 张翔, 富宏亚, 孙雅洲等. 基于隐Markov模型的微径铣刀磨损监测[J]. 计算机集成制造系统, 2012,18(1):141- 148
Zhang Xiang, Fu Hongya, Su Yazhou, et al. Hidden Markov model based micro-milling tool wear monitoring[J]. Computer Integrated Manufacturing Systems, 2012,18(1):
141-148
[15] Usui, E., Shirakashi, T., Kitagawa T., Analytical prediction of three dimensional cutting process, part 3: cutting temperature and crater wear of carbide tool[J]. Trans.
ASME J. Eng. Mater. Technol., 1978, 100:236-243.
[16] Kitagawa T., Maekawa, K., Shirakashi, T. and Usui, E., Analytical prediction of flank wear of carbide tools in turning plain carbide steels, part 1: characteristic equation
of flank wear[J]. Bull. Japan Soc. of Prec. Eng., 1988, 22(4): 236–269.

PDF(985 KB)

Accesses

Citation

Detail

段落导航
相关文章

/