沿轴向指数分布的功能梯度Timoshenko梁的频率精确解

邓昊1,程伟1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 91-96.

PDF(1804 KB)
PDF(1804 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (6) : 91-96.
论文

沿轴向指数分布的功能梯度Timoshenko梁的频率精确解

  • 邓昊1,程伟1
作者信息 +

Exact solution of the free vibration of exponentially non-uniform functionlly graded Timoshenko beams

  • Deng Hao, Cheng wei
Author information +
文章历史 +

摘要

本文通过对状态空间变量进行变量替换,求得了沿轴向指数分布的功能梯度Timoshenko梁的状态空间传递矩阵方程。本文通过传递矩阵法计算了多种边界条件下结构固有频率的精确解,并与解析解进行对比。通过分析梯度参数 对结构固有频率与模态振型的影响,本文纠正了部分文献中存在的错误,并且采用有限元法对本文的计算结果进行验证。本文通过对比不同梁理论的计算结果,定量的分析了剪切刚度和转动惯量对结构固有频率的影响。计算结果表明,本文所提出的方法物理概念清晰,降低问题求解难度的同时可以减少计算量。

Abstract

Based on the state space variable replacement,the transfer matrix equation of a Timoshenko beam with axially exponential distributed functional gradation was derived.The exact solution of   natural frequencies of the structure with multiple boundary conditions was obtained by the transfer matrix method and compared with the available analytical solution.The results show that the relation curve between the frequency and the gradient of the material is continuous and smooth,and there is no jumping phenomenon.Meanwhile the finite element method was used to verify the results.The effects of shear stiffness and moment of inertia on the natural frequencies of the structure were analyzed by comparing the results according to different beam theories.The calculation results show that the method presented is clear in physical concept and can reduce the computational complexity and the amount of computation.

关键词

状态空间变量 / 传递矩阵法 / 固有频率 / 功能梯度材料 / 指数梯度

Key words

state space variable / transfer matrix method / natural frequency / functionally graded materials / exponential gradient

引用本文

导出引用
邓昊1,程伟1. 沿轴向指数分布的功能梯度Timoshenko梁的频率精确解[J]. 振动与冲击, 2017, 36(6): 91-96
Deng Hao, Cheng wei. Exact solution of the free vibration of exponentially non-uniform functionlly graded Timoshenko beams[J]. Journal of Vibration and Shock, 2017, 36(6): 91-96

参考文献

[1] BirmanV,Byrd LW.Modeling and analysis of functionally graded materials and structures.[J]Appl Mech Rev 2007,60:195-216
[2] Analytical solution of a cantilever functionally graded beam.[J]Compos Sci Technol 2007,61:689-696
[3] Li X-F.A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams.[J]J Sound Vib 2008,318:1210-29
[4] Li X-F A higher-order theory for static and dynamic analyses of functionally graded beams.[J]Arch Appl Mech 2010,80: 1197 -1212
[5] Pradhan KK,Chakraverty S.Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method.[J]Compos Part B-Eng 2013,51:175-84
[6] Kang Y-A,Li X-F.Large deflections of a non-linear cantilever functionally graded beam.[J]J Reinf Plast Compos 2010, 29: 1761 -1774
[7] Elishakoff I.Eigenvalues of inhomogeneous structures:unusual closed-form solutions.[M]Boca Raton:CRC Press;2005
[8] Ece MC,Aydogdu M,TaskinV.Vibration of a variable cross-section beam.[J]Mech Res Commun 2007,34:78-84
[9] Atmane HA, Tounsi A,Meftah SA,Belhadj HA.Free vibration behavior of exponentially functionally graded beams with varying cross-section.[J]J Vib Control 2011,17:311-318
[10] Wang CY,Wang CM.Exact vibration solutions for a class of nonuniform beams.[J]J Eng Mech.2013,139:928-931
[11] Wang CY, Wang CM.Exact vibration solution for exponentially tapered cantilever with tip mass.[J]Vib Acoust.2012,134
[12] Rajasekaran S. Differential transformation and differential    quadrature methods for centrifugally stiffened axially functionally graded tapered beams.[J]Int J Mech Sci 2013,74:15-31
[13] Esmailzadeh E,Ohadi A.Vibration and stability analysis of non-uniform Timoshenko beams under axial and distributed tangential load.[J]J Sound Vib 2000,236:443-456
[14] Huang Y,Yang L-E,Luo Q-Z.Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-uniform cross-section.[J]Compos Part B Eng 2012,45:1493-1498
[15] X-F Li,Y-A Kang,Exact frequency equations of free vibration of exponentially functionally graded beams [J] Applied   Acoustics ,2013,74:413-420
[16] A-Y Tang,J-X Wu.Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams.[J]International Journal of Mechanical  Sciences, 2014,89:1-11
[17] Reza Attarnejad.Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams[J]Finite Elements in Analysis and Design.2010,46:916-929

PDF(1804 KB)

775

Accesses

0

Citation

Detail

段落导航
相关文章

/