一类碰撞振动系统的激变和拟周期-拟周期阵发性

乐源1 缪鹏程2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 1-7.

PDF(1645 KB)
PDF(1645 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 1-7.
论文

一类碰撞振动系统的激变和拟周期-拟周期阵发性

  • 乐源1  缪鹏程2
作者信息 +

Crisis and quasiperiod-quasiperiod intermittency in a vibro-impact system

  • YUE Yuan,MIAO Pengcheng
Author information +
文章历史 +

摘要

论文研究了一类三自由度碰撞振动系统的激变和阵发性。六维庞加莱映射能够表示成另外一个不对称映射的二次迭代,这表明系统具有对称性。该系统普遍存在发生Hopf分岔后得到的一对共轭拟周期运动。根据动力系统的极限集理论,讨论了极限集的对称性,得到系统发生激变的条件,并引入一个距离函数判定对称性恢复和激变临界点。当共轭混沌吸引子和不稳定对称不动点的最小距离等于零时,一对共轭混沌吸引子将会与不稳定的对称不动点在其吸引域边界发生碰撞,从而导致激变。通过数值模拟,揭示了激变之后的一种新的阵发性动力学现象:拟周期-拟周期阵发性。其分岔机制是:两个共轭拟周期吸引子→两个共轭拟周期吸引子倍化→两个共轭带状混沌吸引子→一个对称混沌吸引子→一个对称拟周期引子。通过对称极限集理论来区分对称吸引子和共轭吸引子,同时采用QR方法计算Lyapunov指数并用来确定吸引子的类型。激变导致的拟周期-拟周期阵发性,对于多自由度碰撞振动系统的动力学研究及优化设计具有重要意义。

Abstract

Crisis and quasiperiod-quasiperiod intermittency in a 3-DOF vibro-impact system with symmetry were studied.The system’s 6-dimensional Poincaré map was expressed as the second iteration of another unsymmetric map,it implied that the system has a symmetry.Two conjugate quasi-periodic motions,coming from two conjugate periodic motions after Hopf bifurcation coexisted widely in such a dynamic system.According to the limit set theory of dynamic systems and the symmetry of the limit set,a distance function was introduced to detect the crisis of symmetry increasing.It was shown that when the minimum distance between a pair of conjugate chaotic attractors and an unstable symmetric fixed point is close to zero,a pair of conjugate chaotic attractors do not collide with the unstable symmetric fixed point on the attracting field boundary,to lead to a crisis.Numerical simulations revealed that a new intermittency behavior named the quasiperiod-quasiperiod intermittency occurs; the mechanism of symmetry restoring of quasi-periodic motion is two conjugate tori (quasi-periodic) → doubling of two conjugate tori → two conjugate band chaos attractors → a pair of symmetric chaos attractors → one symmetric torus (quasi-periodic); the symmetric limit set is introduced to distinguish symmetric attractors from conjugate ones; Lyapunov exponent spectrum computed with QR method is used to determine the type of attractors; the quasiperiod-quasiperiod intermittency is of importance for the optimization design of vibro-impact systems. 

关键词

碰撞振动系统 / 拟周期运动 / 激变 / 阵发性

Key words

vibro-impact system
/ quasi-periodic motion / crisis / intermittency

引用本文

导出引用
乐源1 缪鹏程2. 一类碰撞振动系统的激变和拟周期-拟周期阵发性[J]. 振动与冲击, 2017, 36(7): 1-7
YUE Yuan,MIAO Pengcheng. Crisis and quasiperiod-quasiperiod intermittency in a vibro-impact system[J]. Journal of Vibration and Shock, 2017, 36(7): 1-7

参考文献

[1] Chossat P, Golubitsky M.Symmetry-increasing bifurcation of chaotic attractors[J]. Physica D, 1988,32: 423-436.
[2]Grebogi C, Ott E, YorkeJ A.Chaotic Attractors in Crisis[J].Physical Review Letters, 1982,48: 1507-1510.
[3]Ben-Tal A. Symmetry restoration in a class of forced oscillators[J].Physica D,2002,171 :236-248.
[4] 王晓东, 陈予恕.一类电力系统的分岔和奇异性分析[J].振动与冲击, 2014, 33(4): 1-6.
WANGXiao-dong, CHEN Yu-shu. Bifurcation and Singularity Analysis for a Class of Power System[J]. Journal Of Vibration And Shock, 2014, 33(4): 1-6(in Chinese).
[5] 于海,陈予恕,曹庆杰. 多自由度裂纹转子系统非线性动力学特性分析[J].振动与冲击, 2014, 33(7): 92-98.
YU Hai, CHEN Yu-shu, CAO Qing-jie. Bifurcation analysis for a nonlinear cracked multi-degree-of-freedom rotor system[J]. Journal Of Vibration And Shock, 2014, 33(7): 92-98(in Chinese).
[6] Holmes P J.The dynamics of repeated impacts with asinusoidally vibrating table[J].Journal of Sound and Vibration, 1982,84: 173-189.
[7]Shaw S W.Forced vibrations of a beam with one-sided amplitude constraint: Theory and experiment[J].Journal of Sound and Vibration, 1985,92:199-212.
[8]Luo G W, Xie J H.Hopf bifurcation and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases[J].International Journal of Non-Linear Mechanics,2002,37: 19-34.
[9]Xie J H, DingW C. Hopf-Hopf bifurcation and invariant torus   of a vibro-impact system[J].International Journal of Non-Linear Mechanics,2005,40:531-543.
[10] Ding W C, Xie J H.Dynamical analysis of a two-parameter family for a vibro-impact system in resonance cases[J].Journal of Sound and Vibration, 2005,287: 101-115.
[11] Yue Y, Xie J H.Neimark-Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system[J].International Journal of Nonlinear Mechanics,2013,48: 51-58.
[12]Zhang Y X, Kong G Q, Yin J N. Two codimensin-3 bifurcations and non-typical routes to chaos of a shaker system[J]. Acta Physica.Sinica,2008,57: 61-82.
[13] Nordmark A B.Non-periodic motion caused by grazing incidence in an impact oscillator[J].Journal of Sound and Vibration,1991,145:279-297.
[14] Mehran K, Zahawi B, Giaouris D.Investigation of the near-grazing behavior in hard-impact oscillators using
[15]冯进钤, 徐伟. 碰撞振动系统中周期轨擦边诱导的混沌激变[J]. 力学学报, 2013, 45:(1)30-36.
FENG Jin-qian, XU Wei. Grazing-induced chaostic crisis for periodic orbits in vibro-impact systems[J]. Chinese Journal of theoretic and applied mechanics, 2013, 45(1): 30-36(in Chinese).
[16] Gendelman OV.Analytic treatment of a system with a vibro-impact nonlinear energy sink[J].Journal of Sound and Vibrations.2012, 21:4599-4608.
[17]李飞, 丁旺才. 多约束碰撞振动系统的粘滞运动分析[J]. 振动与冲击, 2010, 29(5): 150-156.
LI Fei, DING Wang-cai. Analysis of the Sticking Motion in Vibro-impactSystem with Multiple Constraints[J].Journal Of Vibration And Shock, 2010, 29(5): 150-156(in Chinese).
[18] Yue Y, Xie J H.Capturing the symmetry of attractors and the transition to symmetric chaos in a vibro-impact system[J].International Journal of Bifurcation and Chaos.2012,5: Art No1250109.
[19] Yue Y, Xie J H.Lyapunov exponents and coexistense of attractors in vibro-impact systems with symmetric two-sided constraints[J].Physics Letters A, 2009, 373:2041-2046.
[20] Eckmann J P, RuelleD.Ergodic theory of chaos and strange attractors[J].Reviews of Modern Physics, 1985, 57:617-656.
[21] Manffra E F, Caldas IL, Viana RL, et al. Type-Ⅰintermittency and crisis-induced intermittency in a semiconductor laser under injection current modulation[J]. Nonlinear Dynamics, 2002,27:185-195.
[22] Werner J P, Stemler T, Benner H. Crisis and stochastic resonance in Shinrili’s circuit[J]. Physica D, 2008, 237:859-865.
[23] Chian A C L, Rempel EL, Rogers C. Complex economic dynamics: Chaotic saddle, crisis and intermittency[J]. Chaos, Solitons & Fractals, 2006, 29:1194-1218.
[24] Tchistiakov V. Detecting symmetry breaking bifurcations in the system describing the dynamics of coupled arrays of Josephson junctions[J].Physical D, 1996, 91:67-85.
 

PDF(1645 KB)

Accesses

Citation

Detail

段落导航
相关文章

/