[1] Chossat P, Golubitsky M.Symmetry-increasing bifurcation of chaotic attractors[J]. Physica D, 1988,32: 423-436.
[2]Grebogi C, Ott E, YorkeJ A.Chaotic Attractors in Crisis[J].Physical Review Letters, 1982,48: 1507-1510.
[3]Ben-Tal A. Symmetry restoration in a class of forced oscillators[J].Physica D,2002,171 :236-248.
[4] 王晓东, 陈予恕.一类电力系统的分岔和奇异性分析[J].振动与冲击, 2014, 33(4): 1-6.
WANGXiao-dong, CHEN Yu-shu. Bifurcation and Singularity Analysis for a Class of Power System[J]. Journal Of Vibration And Shock, 2014, 33(4): 1-6(in Chinese).
[5] 于海,陈予恕,曹庆杰. 多自由度裂纹转子系统非线性动力学特性分析[J].振动与冲击, 2014, 33(7): 92-98.
YU Hai, CHEN Yu-shu, CAO Qing-jie. Bifurcation analysis for a nonlinear cracked multi-degree-of-freedom rotor system[J]. Journal Of Vibration And Shock, 2014, 33(7): 92-98(in Chinese).
[6] Holmes P J.The dynamics of repeated impacts with asinusoidally vibrating table[J].Journal of Sound and Vibration, 1982,84: 173-189.
[7]Shaw S W.Forced vibrations of a beam with one-sided amplitude constraint: Theory and experiment[J].Journal of Sound and Vibration, 1985,92:199-212.
[8]Luo G W, Xie J H.Hopf bifurcation and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases[J].International Journal of Non-Linear Mechanics,2002,37: 19-34.
[9]Xie J H, DingW C. Hopf-Hopf bifurcation and invariant torus of a vibro-impact system[J].International Journal of Non-Linear Mechanics,2005,40:531-543.
[10] Ding W C, Xie J H.Dynamical analysis of a two-parameter family for a vibro-impact system in resonance cases[J].Journal of Sound and Vibration, 2005,287: 101-115.
[11] Yue Y, Xie J H.Neimark-Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system[J].International Journal of Nonlinear Mechanics,2013,48: 51-58.
[12]Zhang Y X, Kong G Q, Yin J N. Two codimensin-3 bifurcations and non-typical routes to chaos of a shaker system[J]. Acta Physica.Sinica,2008,57: 61-82.
[13] Nordmark A B.Non-periodic motion caused by grazing incidence in an impact oscillator[J].Journal of Sound and Vibration,1991,145:279-297.
[14] Mehran K, Zahawi B, Giaouris D.Investigation of the near-grazing behavior in hard-impact oscillators using
[15]冯进钤, 徐伟. 碰撞振动系统中周期轨擦边诱导的混沌激变[J]. 力学学报, 2013, 45:(1)30-36.
FENG Jin-qian, XU Wei. Grazing-induced chaostic crisis for periodic orbits in vibro-impact systems[J]. Chinese Journal of theoretic and applied mechanics, 2013, 45(1): 30-36(in Chinese).
[16] Gendelman OV.Analytic treatment of a system with a vibro-impact nonlinear energy sink[J].Journal of Sound and Vibrations.2012, 21:4599-4608.
[17]李飞, 丁旺才. 多约束碰撞振动系统的粘滞运动分析[J]. 振动与冲击, 2010, 29(5): 150-156.
LI Fei, DING Wang-cai. Analysis of the Sticking Motion in Vibro-impactSystem with Multiple Constraints[J].Journal Of Vibration And Shock, 2010, 29(5): 150-156(in Chinese).
[18] Yue Y, Xie J H.Capturing the symmetry of attractors and the transition to symmetric chaos in a vibro-impact system[J].International Journal of Bifurcation and Chaos.2012,5: Art No1250109.
[19] Yue Y, Xie J H.Lyapunov exponents and coexistense of attractors in vibro-impact systems with symmetric two-sided constraints[J].Physics Letters A, 2009, 373:2041-2046.
[20] Eckmann J P, RuelleD.Ergodic theory of chaos and strange attractors[J].Reviews of Modern Physics, 1985, 57:617-656.
[21] Manffra E F, Caldas IL, Viana RL, et al. Type-Ⅰintermittency and crisis-induced intermittency in a semiconductor laser under injection current modulation[J]. Nonlinear Dynamics, 2002,27:185-195.
[22] Werner J P, Stemler T, Benner H. Crisis and stochastic resonance in Shinrili’s circuit[J]. Physica D, 2008, 237:859-865.
[23] Chian A C L, Rempel EL, Rogers C. Complex economic dynamics: Chaotic saddle, crisis and intermittency[J]. Chaos, Solitons & Fractals, 2006, 29:1194-1218.
[24] Tchistiakov V. Detecting symmetry breaking bifurcations in the system describing the dynamics of coupled arrays of Josephson junctions[J].Physical D, 1996, 91:67-85.