微幅晃动下考虑地基效应的矩形贮液结构动力响应研究

程选生,景 伟,李国亮,李 德,马 亮

振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 164-170.

PDF(1642 KB)
PDF(1642 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 164-170.
论文

微幅晃动下考虑地基效应的矩形贮液结构动力响应研究

  • 程选生,景伟,李国亮,李德,马亮
作者信息 +

Dynamic response of a rectangular liquid-storage structure considering foundation effect under small amplitude sloshing

  • CHENG Xuansheng,JING Wei,LI Guoliang,LI De,MA Liang
Author information +
文章历史 +

摘要

一般情况下矩形贮液结构通过底板直接坐落在地基上,有必要在考虑地基效应的基础上研究其动力特性。定义了微幅晃动波高限值,建立了矩形贮液结构的简化模型。采用人工边界模拟地基效应,建立了有限元计算模型,对比了两类模型对应的晃动波高以验证简化模型的合理性,基于势流理论在微幅晃动范围内研究了不同边界条件、不同地震波和不同地震加速度幅值下矩形贮液结构的动力响应。结果表明,两类模型得到的晃动波高趋势一致,且最大晃动波高相差较小。在微幅晃动范围,液体最大晃动波高和地震加速度幅值成线性关系,考虑土-结构相互作用后,壁板水平位移、壁板有效应力和液体晃动压力有较大程度的的减小,而地基效应对液体晃动波高影响很小。

Abstract

A rectangular liquid-storage structure is often located on a foundation through bottom plates,it is necessary to study its dynamic characteristics considering the foundation effect.Here,the limit height of small amplitude sloshing was defined,the simplified model of the rectangular liquid storage structure was established.Using artificial boundaries to simulate foundation effect,the finite element calculation model was established.Sloshing heights corresponding to two kinds of models were compared to verify the rationality of the simplified model.Based on the potential flow theory,the dynamic responses of the rectangular liquid-storage structure under different boundary conditions,different seismic waves and different seismic acceleration amplitudes were studied.The results showed that the sloshing height trends of the two kinds of models are consistent,and the difference of the maximum sloshing heights is small; in the range of small amplitude sloshing,there is a linear relationship between the maximum sloshing height and the amplitude of earthquake acceleration; after considering soil-structure interaction,the tank wall horizontal displacement,tank wall effective stress and liquid sloshing pressure have a larger level of reduction,but the foundation effect has little influence on liquid sloshing height.

关键词

微幅晃动 / 土-结构相互作用 / 矩形贮液结构 / 粘弹性边界 / 流-固耦合 / 动力响应

Key words

small amplitude sloshing / soil-structure interaction / rectangular liquid-storage structure / viscoelastic boundary / fluid-structure interaction / dynamic response

引用本文

导出引用
程选生,景 伟,李国亮,李 德,马 亮. 微幅晃动下考虑地基效应的矩形贮液结构动力响应研究[J]. 振动与冲击, 2017, 36(7): 164-170
CHENG Xuansheng,JING Wei,LI Guoliang,LI De,MA Liang. Dynamic response of a rectangular liquid-storage structure considering foundation effect under small amplitude sloshing[J]. Journal of Vibration and Shock, 2017, 36(7): 164-170

参考文献

[1]  夏栋舟, 何益斌, 刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. 岩土力学, 2009, 30(10): 2923-2928.
    Xia Dong-zhou, He Yi-bin, Liu Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. Rock and Soil Mechanics, 2009, 30(10): 2923-2928.
[2]  刘洁平, 张令心. 高层建筑土-结构相互作用地震反应分析简化评估方法[J]. 土木工程学报, 2010, 43(12): 28-34.
    Liu Jie-ping, Zhang Ling-xin. A simplified assessment method for seismic response analysis ofsoil-structure interaction of high-rise buildings[J]. China Civil Engineering Journal, 2010, 43(12): 28-34.
[3]  陈少林, 唐敢, 刘启方, 等. 四维土-结构动力相互作用的一种时域直接分析方法[J]. 地震工程与工程振动, 2010, 30(2): 24-31.
    Cheng Shao-lin, Tang Gan, Liu Qi-fang, et al. A direct time-domain method for analysis of three-dimensional soil-structure dynamic interaction[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(2): 24-31.
[4]  张之颖, 赵钟斗, 吕西林, 等. SSI体系阻尼特性振动台模型试验研究[J]. 土木工程学报, 2010, 43(2): 100-104.
    Zhang Zhi-ying, Zhao Zhong-dou, Lu Xi-lin, et al. Shaking table tests of the damping behavior of SSI systems[J]. China Civil Engineering Journal, 2010, 43(2): 100-104.
[5]  刘伟庆, 李昌平, 王曙光,等. 不同土性地基上高层隔震结构振动台试验对比研究[J]. 振动与冲击, 2013, 32(16): 128-133.
    Liu Wei-qing, Li Chang-ping, Wang Shu-guang, et al. Comparative study on high-rise isolated structure founded on various soil foundations by using shaking table tests[J]. Journal of Vibration and Shock, 2013, 32(16): 128-133.
[6]  易伟建, 夏玲琼. 近场地震下考虑桩-土-框架结构相互作用的拟动力试验[J]. 土木工程学报, 2014, 47(4): 1-8.
    Yi Wei-jian, Xia Ling-qiong. Pseudo dynamic experimental analysis of pile-soil-frame interaction in near-fault earthquakes[J]. China Civil Engineering Journal, 2014, 47(4): 1-8.
[7]  刘毅, 薛素铎, 李雄彦. 土-结构相互作用下网架结构动力性能研究[J]. 振动与冲击, 2014, 33(10): 22-28.
    Liu Yi, Xue Su-duo, Li Xiong-yan. Grid structure dynamic performance analysis considering soil-structure interaction[J]. Journal of Vibration and Shock, 2014, 33(10): 22-28.
[8]  王博, 徐建国. 大型渡槽考虑土-结构相互作用的动力分析[J]. 世界地震工程, 2000, 16(3): 110-115.
    Wang Bo, Xu Jian-guo. Dynamic analysis of large aqueducts with soil-structure interaction[J]. World Earthquake Engineering, 2000, 16(3): 110-115.
[9] Larkin T. Seismic response of liquid storage tanks incorporating soil structure interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134: 1804-1814.
[10] 程选生, 杜永峰. 弹性地基上矩形贮液结构的液-固耦合振动特性[J]. 工程力学, 2011, 28(2): 186-191.
    Cheng Xuan-sheng, Du Yong-feng. Vibration characteristic analysis of rectangular liquid-storage structures considering liquid-solid coupling on elastic foundation[J]. Engineering Mechanics, 2011, 28(2): 186-191.
[11] Kianoush M R, Ghaemmaghami A R. The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating  soil-structure interaction[J]. Engineering Structures, 2011, 33: 2186-2200.
[12] •Patel C N, Patel H S. Soil-Foundation-Structure Interaction Effects in Seismic behaviour of RC Elevated Water Tank [C] // Proceedings of International Conference on Advances in Tribology and Engineering Systems, Part of the series Lecture Notes in Mechanical Engineering. 2013: 465-477.
[13] 张华, 纪爱丽, 徐威, 等. 考虑土−结构相互作用渡槽流固耦合体风振响应分析[J]. 中南大学学报(自然科学版), 2015, 46(5): 1845-1850.
    Zhang Hua, Ji Ai-li, Xu Wei, et al. Analysis of wind-induced vibration response of fluid-structure interaction system for aqueduct considering soil-structure interaction[J]. Journal of Central South University (Science and Technology), 2015, 46(5): 1845-1850.
[14] 程选生, 杜永峰, 李慧. 钢筋混凝土矩形贮液结构的液-固耦合晃动—弹性底板[J]. 应用力学学报, 2008,25(4): 622-626.
    Cheng Xuan-sheng, Du Yong-feng, Li Hui. Liquid-solid coupling sloshing of reinforced concrete rectangular liquid-storage tanks—elastic soleplate[J]. Chinese Journal of Applied Mechanics, 2008,25(4): 622-626.
[15] 程选生. 钢筋混凝土矩形贮液结构的液-固耦合振动[J]. 煤炭学报, 2009, 34(3): 340-344.
    Cheng Xuan-sheng. Liquid-solid coupling vibration of reinforced concrete rectangular liquid-storage tanks [J]. Journal of China Coal Society, 2009, 34(3): 340-344.
[16] 程选生, 杜永峰. 弹性壁板下钢筋混凝土矩形贮液结构的液动压力[J]. 工程力学, 2009,26(6): 82-88.
    Cheng Xuan-sheng, Du Yong-feng. The dynamic fluid pressure of reinforced concrete rectangular liquid-storage tanks with elastic walls[J]. Engineering Mechanics, 2009,26(6): 82-88.
[17] 程选生, 周志, 史晓宇. 矩形贮液结构的液-固耦合振动特性试验[J]. 农业工程学报, 2010, 26(2): 197-201.
    Cheng Xuan-sheng, Zhou Zhi, Shi Xiao-yu. Vibration characteristic test of liquid-structure interaction on rectangular liquid-storage structure[J]. Transactions of the CSAE, 2010, 26(2): 197-201.
[18] 程选生, 郑颖人. 弯剪型模型下弹性贮液结构的自振特性分析[J]. 重庆大学学报, 2011, 34(12): 132-137.
    Cheng Xuan-sheng, Zheng Ying-ren. Free vibration characteristic analysis of the elastic liquid-storage tanks based on the bending shearing model[J]. Journal of Chongqing University, 2011, 34(12): 132-137.
[19] Cheng X S, Cao L L, Zhu H Y. Liquid-solid interaction seismic response of an isolated overground rectangular reinforced-concrete liquid-storage structure[J]. Journal of Asian Architecture and Building Engineering, 2015,14(1): 175-180.
[20] 黄德波. 水波理论基础[M]. 北京:国防工业出版社, 2011.
[21] Haroun M A, Wajdi A I. Parametric study of seismic soil-tank interaction. Ⅰ: Horizontal excitation[J]. Journal of Structure Engineering, 1992, 118(3): 783-797.
[22] 孙建刚. 大型立式储罐隔震—理论、方法及试验[M]. 北京: 科学出版社, 2009.
[23] Jadhav M B, Jangid R S. Response of base-isolated liquid storage tanks[J]. Shock & Vibration, 2004, 11(1): 33-45.

PDF(1642 KB)

Accesses

Citation

Detail

段落导航
相关文章

/