基于STUKF的非线性结构系统时变参数识别

杜永峰1,2,张浩1,赵丽洁1,李万润1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 171-176.

PDF(1383 KB)
PDF(1383 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 171-176.
论文

基于STUKF的非线性结构系统时变参数识别

  • 杜永峰1,2,张浩1,赵丽洁1,李万润1
作者信息 +

Time-varying parametric identification of nonlinear structural systems based on STUKF

  • DU Yongfeng1,2,ZHANG Hao1,ZHAO Lijie1,LI Wanrun1
Author information +
文章历史 +

摘要

针对非线性结构系统时变参数识别问题,传统无迹卡尔曼滤波(unscented Kalman filter, UKF)难以有效跟踪结构参数的变化。将强跟踪滤波原理引入无迹卡尔曼滤波,提出一种强跟踪无迹卡尔曼滤波(strong tracking unscented Kalman filter,STUKF)算法,以识别结构参数的变化。首先,在UKF量测更新后,依据输出残差计算渐消因子矩阵;其次,引入两个渐消因子矩阵实时调整状态预测协方差矩阵,使残差序列强行正交,快速修正结构参数估计值,使STUKF具有对结构参数变化的跟踪能力。此外,为节省计算时间,调整状态预测协方差矩阵后不再进行sigma点采样,保证了算法的高效性。数值分析结果表明,该算法能有效识别非线性结构系统的参数及其变化,并具有较强的抗噪性。

Abstract

Traditional unscented Kalman filter (UKF) cannot track the changed parameters of nonlinear structural systems.Based on the strong tracking filter principle,a strong tracking unscented Kalman filter (STUKF) method was put forward to identify the time-varying parameters of nonlinear structural systems.Firstly,the fading factor matrix was calculated with output residuals after the measurement update of UKF.Secondly,two fading factor matrices were introduced to adjust the predicted state covariance matrix in real time,the residual sequence was made to be orthogonal and the estimated values of structure parameters were updated rapidly,thus STUKF was made to be capable of tracking the changes of structure parameters.Furthermore,the computational efficiency was improved by taking no sigma points sampling after adjusting the predicted state covariance matrix.Numerical simulation results demonstrated that the proposed method can effecfively identify parameters and changes of nonlinear structural systems,and it has a stronger anti-noise capability. 

关键词

强跟踪滤波 / 无迹卡尔曼滤波 / 非线性结构系统 / 时变 / 参数识别

Key words

strong tracking filter / unscented Kalman filter / nonlinear structural systems / time-varying / parameter identification

引用本文

导出引用
杜永峰1,2,张浩1,赵丽洁1,李万润1. 基于STUKF的非线性结构系统时变参数识别[J]. 振动与冲击, 2017, 36(7): 171-176
DU Yongfeng1,2,ZHANG Hao1,ZHAO Lijie1,LI Wanrun1. Time-varying parametric identification of nonlinear structural systems based on STUKF[J]. Journal of Vibration and Shock, 2017, 36(7): 171-176

参考文献

[1] 雷鹰,周欢.有限观测下的结构损伤实时在线诊断[J].振动与冲击,2014,33(17):161-166.
LEI Ying, ZHOU Huan. On-line structural damage detection based on limited response observations[J]. Journal of Vibration and Shock,2014,33(17):161-166.
[2] 丁勇,许国山,林琦,等.基于时-频域信息的结构系统识别方法研究[J].土木工程学报,2012,45(S1):15-19.
DING Yong, XU Guo-shan, LIN Qi, et al. Structural system identification based on frequency-time domain information[J]. China Civil Engineering Journal,2012,45(S1):15-19.
[3] Lin J W, Raimondo B, Smyth A W, et al. On-line identification of nonlinear hysteretic structural systems using a variable trace approach[J]. Earthquake Engineering and Structural Dynamics,2001,30(9):1279–1303.
[4] Yang J N, Lin S. On-line identification of nonlinear hysteretic structures using an adaptive tracking technique[J]. International Journal of Nonlinear Mechanics,2004,39(9):1481-1491.
[5] 尹强,周丽.基于遗传优化最小二乘算法的结构损伤识别[J].振动与冲击,2010,29(8):73-77.
YIN Qiang, ZHOU Li. Structural damage identification based on GA optimized least square estimation[J]. Journal of Vibration and Shock,2010,29(8):73-77.
[6] Yang J N, Lin S, Huang H, et al. An adaptive extended Kalman filter for structural damage identification[J]. Journal of Structural Control and Health Monitoring,2006,13(4):849-867.
[7] 周丽,吴新亚,尹强,等.基于自适应卡尔曼滤波方法的结构损伤识别实验研究[J].振动工程学报,2008,21(2):197-202.
ZHOU Li, WU Xin-ya, YIN Qiang, et al. Experimental study of an adaptive extended Kalman filter for structural damage identification[J]. Journal of Vibration Engineering,2008,21(2):197-202.
[8] Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control,2000,45(3):477-482.
[9] Wu Meiliang, Smyth A W. Application of the unscented Kalman filter for real-time nonlinear structural system identification[J]. Structural Control and Health Monitoring,2007,14(7):971-990.
[10] Xie Zongbo, Feng Jiuchao. Real-time nonlinear structural system identification via iterated unscented Kalman filter[J]. Mechanical Systems and Signal Processing,2012,28(2):309-322.
[11] Bisht S S, Singh M P. An adaptive unscented Kalman filter for tracking sudden stiffness changes[J]. Mechanical Systems and Signal Processing ,2014,49(1-2):181-195.
[12] 谢强,唐和生,邸元.SVD-Unscented卡尔曼滤波的非线性结构系统识别[J].应用力学学报,2008,25(1):57-61.
XIE Qiang, TANG He-sheng, DI Yuan. SVD-unscented Kalman filter for nonlinear structural system identification[J]. Chinese Journal of Applied Mechanics,2008,25(1):57-61.
[13] 周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
ZHOU Dong-hua, YE Yin-zhong. Modern fault diagnosis and fault tolerant control[M]. Beijing:Tsinghua University Press,2000.
[14] 王小旭,赵琳,夏全喜,等.基于Unscented变换的强跟踪滤波器[J].控制与决策,2010,25(7):1063-1068.
WANG Xiao-xu, ZHAO Lin, XIA Quan-xi, et al. Strong tracking filter based on unscented transformation[J]. Control and Decision,2010,25(7):1063-1068.
[15] Voss H U, Timmer J, Kurths J. Nonlinear dynamical system identification from uncertain and indirect measurements[J]. International Journal of Bifurcation and Chaos,2002,14(6):1905-1933.

PDF(1383 KB)

709

Accesses

0

Citation

Detail

段落导航
相关文章

/